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I. INTRODUCTION

For over two decades, NASA has supported a continuous effort in solar coronal

studies based on high resolution X-ray imaging, through a series of research

contracts with AS&E. This report describes the work performed under the latest

of these contracts, which extends the set of synoptic solar X-ray images

through a full 22-year (magnetic) solar cycle. Specifically, the interval of

time covered by this work extends from the maximum of Solar Cycle 21 to the

beginning of the ascending phase of Solar Cycle 22.

Each flight of the X-ray imaging payload has provided an observation of at

least one previously unknown process or structure in the solar corona. Over-

all, the result of th_s contract has been a clarification of, instead of a

revolution in, our understanding of coronal processes. Coordinated, multispec-

tral observations have played a dramatically increasing role in th_s research,

_ndicating the maturing of this field. The major new results from this work

are the limits placed on models of coronal heating based on impulsive heating

("nanoflares") of coronal loops as obtained through coordinated observations

with the NRL HRTS Sounding Rocket payload as well as through the high time

resolution X-ray images obtained with the ultra-high resolution payload CCD

camera.

A summary of the research activity in this project is given in Section 2. The

results of th_s research are presented in the form of 23 papers contained in

Section 4.

I.I Statement of Work

The overall scientific program consists of several broad objectives which are

pursued by the development and flight of the AS&E High Resolution Soft X-Ray

Imaging Sounding Rocket Payload followed by the analysis of the resulting data

and by the comparison with both ground-based and space-based observations per-

formed by other investigators (including archival and synoptic data). The

major scientific objectives are:
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lo Study the thermal equilibrium of active region loop systems by analyzing

the X-ray observations to determine electron temperatures, densities and

pressures, by comparing these measurements with coordinated multispectral

observations, and by developing physical and mathematical models to explain

the data.

. Record the changes in the large scale coronal structures from the maximum

and descending phases of Cycle 21 through the beginning of the ascending

phase of Cycle 22 and correlate these observations with the photospheric

magnetic field.

3. Extend our study of small scale coronal structures through the minimum of

Cycle 21 with a new emphas_s on correlative observations.

The detailed approach to these objectives is presented in Section 4, Scientific

Results. Instrument innovations and developments required for th_s research

include:

I.

2.

3.

4.

.

6.

7.

Grazing Incidence Imaging Telescope

Photographic X-Ray Sensitometry

Two-Crystal Collimated Bragg Spectrometer

MultJchannel Plate/Vidicon Real-Time X-Ray Imaging and Aspect Control

System

Magnifying Grazing Incidence Relay Optic

X-Ray Sensitive CCD Camera

Sequential, Coordinated Sounding Rocket Flights Utilizing the Saab

S-19 Boost Phase Guidance System

To meet these scientific objectives, AS&E furnished the personnel, equipment,

materials and facilities, except where furnished by the Government, which were

necessary to design, fabricate and support sounding rocket integrations and

launches; and analyze and publish the solar X-ray data from six sounding rocket

flights. The specific tasks included:
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lm Payload Modification and Refurbishment. AS&E modified, refurbished,

tested, calibrated and prepared for flight the X-Ray Imaging and Imaging-

Spectrometer payloads.

2. Launch Support. AS&E provided the necessary resources for payload _ntegrs-

tion and flight support up to rocket lift-off for three sounding rocket

flights.

. Data Reduction and Analysis. AS&E reduced, analyzed and interpreted the

data obtained from the three flights and continued the interpretation of

the data obtained from earlier flights in order to satisfy the scientiffc

objectives of the program. Where applicable these results were reported to

the scientific community in the form of talks presented at scientific

meetings and articles published An refereed journals.

The activities undertaken by AS&E in completing this statement of work are

described below in the form of brief descriptions of the six rocket flights add

of reproductions of the scientific papers written under the contract.
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2. PROJECTSUMMARY

During the period of performance of the contract, six sounding rocket flights

were supported and the new ultra-high resolution payload was developed. The

rocket flights fall into three groups: three flights at or near the maximum of

solar cycle 21; a flight conducted simultaneously with the flight of Spacelab

2; two flights of the new payload launched in conjunction with the Naval

Research L_boratory's (NRL) HRTS payload. With the exception of the Spacelab 2

flight, which was terminated by the White Sands Missile Range (WSMR) Safety

Officer before reaching altitude, all the other flights were successful in

meeting the majority of the comprehensive success criteria established at the

Pre-lntegration Review.

2.1 The November 1979 Campaign

The campaign's objectives were to observe the corona at or near the sunspot

maximum. The launches were scheduled for November 1979 and sunspot maximum was

eventually determined to have occurred in December 1979. The campaign consisted

of two flights to occur 9 to 14 days apart so that the hemisphere hidden from

view at the time of the first flight would have rotated into view for the

second. The experiment configuration for the first flight, 27,030 CS, con-

sisted of the grazing incidence telescope with both film and microchannel

plate/Vidicon cameras. The Nike-Brant VB launch occurred on 7 November 1979,

and the mission success criteria were met. The second flight, 4.337 CS, was

launched successfully on 16 November 1979 by an Aerobee 150 rocket. The

payload contained the original high resolution X-ray mirror with a film camera.

The two flights recorded approximately 90 percent of the corona at the time of

solar maximum and the campaign was considered extremely successful as it

provided an important data point for our studies of the cyclical behavior of

small scale magnetic field emergence. The images from the two flights allowed

a global average to be constructed which was less sensitive to possible

longitudinal variations in the field emergence patterns.
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2.2 The February 1981 Flight

This campaign was the final flight of the imaging spectrometer payload. It was

initially viewed as a collaborative effort with the Solar Maximum Mission

(SMM). Unfortunately, SMM, which was launched in February 1980, lost the

ability to solar point in November 1980. The experiment configuration for this

flight consisted of the grazing incidence telescope with both film and MCP/

Vidicon cameras and a two-crystal collimated Bragg spectrometer. The sounding

rocket, 27.050 CS, was launched 13 February 1981. All the mission success

criteria were met with the exception of the acquisition of the correct roll

angle, which resulted in the spectrometers acquiring data from a quiet, rather

than an active, region of the coroDs.

2.3 Conclusions from the Imaging-Spectroscopy Flight Program

As this was the last flight of the imaging spectrometer payload, it is useful

to summarize the practical results of this project. The objectives of the

program were to obtain simultaneous high-resolution X-ray full disk images and

high-resolutlon spectra of restricted regions, i.e., regions which contained

only a single coronal feature. The imaging spectroscopy payload was flown in

its various forms a total of nine times between 1972 and 1981. Of this total,

two failed to point to the sun and of the remaining seven all were successful

to a greater or lesser extent. ID general, the imaging objectives which were

the first priority, were always met. In the process, we experimented with

different types of photographic emulsions and broad band filters. In the

performance of this program we established a unique record of the variation of

the solar corona over a period spanning a full solar cycle.

In retrospect, the spectroscopy program was too ambitious for the resources

that were available. Prior to SMMo all solar X-ray spectra had been obtained

with large field of view instruments, either the whole sun or, at best, com-

plete active regions. Consequently, emission from a wide range of features,

which we knew from the X-ray images to have different temperature and density

characteristics, were mixed together. By narrowing the field of view to 30 arc

aec FWHM, we hoped to be able to _solate the spectra from a single feature.
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Further, through the aid of a fiducial system, we planned to locate the field

of view directly into a solar image taken through the X-ray telescope.

The first difficulties we encountered were that by reducing the field of view,

we had to point the collimators very precisely to obtain statistically

significant counts during the short time available in a rocket flight. To

compound this difficulty, we learned that H-alpha images upon which we relied

for our pre-launch pointing coordinate selection were not a good proxy for the

X-ray corona. To counter this, we developed a real time imaging and control

system. We were not able to use the SPARCS ASCL system, which uses pitch and

yaw offsets to control the location of the pointing axis, since we were simul-

taneously taking X-ray images through the grazing incidence telescope and this

required the pointing axis to remain sun-centered _f the image was not to fall

outside the film frame. We developed a system based upon an (r, O) transforma-

tion in which r (the radial offset from sun center) was mechanically set into

the collimators, and 0 was the roll angle acquired by SPARCS. Although we had

some success with this system, there was never sufficient time within a rocket

flight to interpret the X-ray image which one was seeing for the first time,

select a target, determine its coordinates in r and 0, calculate the commands

and transmit them to the payload in flight, and verify their implementation.

Nevertheless, we were able to develop and test operationally all these systems.

An investigation based on this hardware was proposed and selected in August

1979 as a candidate for flight as part of the second Spacelab solicitation.

Unfortunately, as a result of budget constraints, the investigation was never

funded beyond the extended Definition Phase.

However, this was not known in February 1981 and following the flight of 27.050

CS, we initiated an instrument upgrade which involved the development of two

new technologies: (I) secondary grazing incidence optics, to obtain a magni-

fied secondary image and (2) an X-ray sensitive CCD camera, to record these

secondary images. These systems were incorporated into the payload to form the

Ultra-High Resolution Telescope which has flown twice, August 1987 and December

1987.
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2.4 The AS&E/NRL Campaign

One of the scientific objectives of the Naval Research Laboratory High

Resolution Telescope Spectrograph (NRL HRTS) investigation on Spacelab 2 was to

locate the high velocity jets which they had observed on a series of rocket

flights with coronal features, especially X-ray bright points. Consequently, a

collaboration was formed and flight 21.094 CS was approved to make simultaneous

observations in the soft X-ray regime with the HRTS observations being made

from Spacelab 2. Amid various distractions on the ground, difficulties in

commencing the observation sequence on Spacelab, and deteriorating weather

conditions, the payload was launched at 1600 MDT and terminated by Missile

Flight Safety approximately 30 seconds later. The payload was recovered more or

less intact, the major damage was the separation of the mirror from the optical

bench. Subsequent calculations showed that this joint must have experienced a

force greater than 115 Gs. Amazingly, the mirror was not damaged apart from

two small chips and a coating of smoke particles.

Since the scientific objectives were not met, a new collaboration involving

joint rocket flights was established.

2.5 The 1987 Campaign

The campaign was organized for a flight on 8 June 1987 to pursue three objec-

tives: (i) a second attempt at the aborted 1985 AS&E/NRL campaign to study

small scale coronal structure utilizing sounding rocket platforms for both

instruments, (2) the first flight of the Ultra-High Resolution Telescope con-

figuration of the payload incorporating the first use in X-ray astronomy of

either an X-ray sensitive CCD camera or secondary grazing incidence optics, and

(3) a collaborative effort with the Solar Maximum Mission X-Ray Polychromator

and ground-based observers to study hot coronal loops. Critical to the success

of dual rocket launches within the temporal constraint of the mean lifetime of

small scale coronal structures (< 90 minutes) was the use of the Saab S-19

boost phase guidance system. With an S-19 the anticipated dispersion of the

rocket trajectories becomes small enough so that launches can be held during a

very wide range of wind conditions, even without obtaining the extended range
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option. However, the application of S-19 units to the two sounding rockets in

this campaign resulted in a number of launch aborts and cancellations.

After a series of attempts, the first launch of the AS&E payload, labeled

36.021 CS, finally occurred on 15 August 1987. The launch of the NRL HRTS V

payload, which was scheduled 30 minutes later, was aborted at T-2 seconds by

yet another S-19 failure. The performance of 36.021 CS was nominal and all

success criter_ were satisfied _ those involving coordinated observation

with HRTS V. Due to a lack of solar activity, the SMM XRP low temperature

spectrometers were turned off to conserve counter gas. Due to the cumulative

effect of all the previous launch cancellations, VLA observations were olso

unobtainable. Big Bear Solar Observatory, Kitt Peak National Solar Observatory,

Owens Valley Radio Observatory, and Sacramento Peak Solar Observatory all ob-

tained coordinated observations.

Following the 15 August 1987 failure of the S-19 system for the NRL payload, a

redesign was made substituting an electromechanical valve for a squib operated

device that controlled the regulator for the canard control gas. An analysis

of the 36.021 CS photographic X-ray images indicated throughput problems with

the grazing incidence optics persisted due to an invisible remnant of the

residue deposited during the termination of the 1985 flight 21.094 CS. A more

intrusive cleaning procedure was executed which brought the throughput back up

to the level obtained when the optic was new without degrading any other aspect

of X-ray performance.

After an intense interval of refurbishment activity, the AS&E payload, now

labeled 36.038 CS, was returned to WSMR for a successful launch on Ii December

1987. The NRL HRTS V payload, labeled 36.020 DS, was also successfully launched

exactly 30 minutes after 36.038 CS. Good observations were made at all the ob-

servatories which participated in the 15 August launch. SMM XRP and VLA radio

observations were also made as part of an expanded multispectral observing cam-

paign called CoMStOC (Coronal Magnetic Structures Observing Campaign).

The simultaneous observations with the improved tempor_l resolution of ground-

based magnetographs obtained during both of the flights have changed our view
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of the magnetic nature of XBP. Previous work initiated in the Skylab era

implied that XBPs were associated with emerging magnetic flux regions while the

recent observations show an association with submerging or cancelling magnetic

flux. The interpretation of XBPs as signatures of surface magnetic field

reconnection is reinforced by the out of phase variation in XBP population with

the weekly 8verage sunspot number through the ll-yesr solar cycle, which was

shown to persist through Cycle 21 and into Cycle 22 by these flights. This

_nterpretation also spurred an investigation _nto archival Skylab data which

resulted in the discovery of an apparent role of XBPs in mediating the change

in coronal hole boundaries.

The comparison of the X-ray images from 36.038 CS with NRL EUV observations

provided the surprising result that the XBPs do not appear to be associated

with the smallest scale high velocity transition region features. The XBPs are

associated with lower velocity (on the order of 20 km/sec) transition region

features with spat_l scales very similar to the coronal structures (10,000

km). The smallest scale high velocity transition region features are found

predominantly in regions of the lowest X-ray emission, adding another clue to

the still unsolved puzzle of the nature of these seemingly ubiquitous energetic

solar features.

The data from this campaign are far from exhausted by these analysis efforts.

Further work will be accomplished under the analysis section of the follow-on

contract NAS5-31619.
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3. PRESENTATIONSANDPUBLICATIONS

The results of the sounding rocket flights and the subsequent analyses

performed under this contract have been presented to the sc_emtific community

as presentations at scientific meetings and as papers published in the

scientific literature.

3.1 Publications

"Soft X-Ray Astronomy using Grazing Incidence Optics," J.M. Davis, Symp. of

High Energy Solar Physics, Inst. Space and Aeronautical Sci., Tokyo, Japan,

1979.

"X-Ray Bright Points arld the Solar Cycle Dependence of Emerging Magnetic Flux,"

J.M. Davis, NASA Conf. Publ_cation 2098, Study of the Solar Cycle from

Space, p. 65-73, 1979.

"Quest for Ultrahigh Resolution in X-Ray Optics," J.M. Davis, A.S. Krieger,

J.K. Silk and R.C. Chase, SPIE 184, 96, 1979.

"A Real-Time Electronic Imaging System for Solar X-Ray Observations from

Sounding Rockets," J.M. Davis, J.W. Ting and M. Gerass_menko, Space Sci.

Instrum. 5, 51, 1979.

"Properties of Coronal Arches," J.M. Davis and A.S. Krieger, Solar Phys. 80,

295, 1982.

"The Growth of Filaments by the Condensation of Coronal Arches," J.M. Davis and

A.S. Krieger, Solar Phys. 81, 325, 1982.

"X-Ray and Microwave Observations of Active Regions," D.F. Webb J.M. Davis,

M.R. Kundu and T. Velusamy, Solar Phys. 85, 267, 1983.

"Comparison of Coronal Holes Observed in Soft X-Ray and Hel 10830 Angstrom

Spectroheliograms," S.W. Kahler J.M. Davis, and J.W. Harvey, Solar Phys.

87, 47, 1983.

"X-Ray Bright Points and the Sunspot Cycle: Further Results and Predictions,"

J.M. Davis, Solar Phys. 88, 337, 1983.

"Observations of the Reappearance of Polar Coronal Holes and the Reversal of

the Polar Magnetic Field," D.F. Webb J.M. Davis and P.S. McIntosh, Solar

Phys. 92, 109, 1984.

"The Detection of Soft X-Rays with Charged Coupled Detectors," P. Burstein and

J.M. Davis, X-Ra_..M_croscgpy, G. Schmahl and D. Rudolph (eds.), Springer-

Verlag, Berlin, 1984.
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"The Design and Evaluation of Grazing Incidence Relay Optics," J.M. Davis,

R.C. Chase, J.K. Silk, and A.S. Krieger, Nuclear Instrum. Methods in Phys.

Res. 221, 20, 1984.

"The Spatial Distribution of 6 Centimeter Gyroresonance Emission from a Flaring

X-Ray Loop," S.W. Kahler, D.F. Webb, J.M. Davis and M.R. Kundu, Solar phys.

92, 271, 1984.

"Small-Scale Flux Emergence and the Evolution of Equatorial Coronal Holes,"

J.M. Davis, Solar Phys. 95, 73, 1985.

"The Cyclical Variation of Energy Flux and Photospheric Magnetic Field Strength

from Coronal Holes," D.F. Webb and J.M. Davis, Solar Phys. 102, 177, 1985.

"The Measured Performance of a Grazing Incidence Relay Optics Telescope for

Solar X-Ray Astronomy," D. Moses, A.S. Krieger, and J.M. Davis, SPIE 691,

138, 1986.

"The Plasma and Magnetic Field Properties of Coronal Loops Observed at High

Spatial Resolution," D,F. Webb, G.D. Holman, J.M. Davis M.R. Kundu and

R.K. Shevgaonkar, Astrophys. J. 315, 716, 1987.

"The Flight Test of a Grazing Incidence Relay Optics Telescope for Solar X-Ray

Astronomy Utilizing a Thinned, Back-Illuminated CCD Detector," J.D. Moses

and J.M. Davis, SPIE 982, 22, 1988.

"The Correspondence Between Small-Scale Coronal Structures and the Evolving

Solar Magnetic Field," D.F. Webb and D. Moses, Advances in Space Research,

Proceedings of the XXVII COSPAR, 1988

"Characteristics of Energetic Solar Flare Electron Spectra," D. Moses, W.

Droege, P.Meyer, and P. Evenson, Ap. J. 346, 1989..

"The Observation of Possible Feconnection Events in the Boundary Changes of

Solar Coronal Holes," S.W. Kahler and D. Moses, Proceedings of the Chapman

Conf. on the Physics of Magnetic Flux Ropes, Hamilton, Bermuda, March 1989.

"Advanced in Photographic X-Ray Imaging for Solar Astronomy," D. Moses,

R. Schueller, K. Waljeski, and J.M. Davis, SPIE 1159, 1989.

"X-Ray Bright Points and He I 10830 Dark Points ," L. Golub, K.L. Harvey,

M. Herant, and D.F. Webb, Solar Phys. (submitted), 1989.

"Correspondence Between Solar Fine-Scale Structures in the Corona, Transition

Region, and Lower Atmosphere from Collaborative Observations," D. Moses,

J.W. Cook, J.-D.F. Bartoe, G.E. Brueckner, K.P. Dere, D. Webb, and

J.M. Davis, F. Recely, S.F. Martin and H. Zirin, Astrophys. J. (in

preparation), 1989.

"Discrete Changes in Solar Coronal Hole Boundaries," S.W. Kahler and D. Moses,

Ap. J. (submitted), 1989.
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3.2 Abstracts of Presentations

(Followin 8 pages)

ORIGINAL PAGE IS

OF POOR QUALITY
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Bull. AAS, ii, 409 (1979).

o3.08.03Establishing the Radiative Instability in Coronal

Loops and the Formation of Filaments. J.M. DAVIS,

AS&E - Observational evidence exlsts that strongly sug-

gests that filaments form as the result of the condensa-

tion of coronal arches. To explore the validity of this

hypothesis, analyses have been performed to determine

(1) the conditions required to establish the radiative

instability in the face of the assumed steady state energy

supply and conduction along the arch and (2) whether the

conversion into internal energy of the potential energy

released by the collapse of the material of the arch could

result in sufficient material being evaporated into the

arch to establish the required conditions.

The analysis enables limits to be set on the physical

parameters of arches which are capable of forming fila-

ments by this mechanism. The times required for these

arches to cool from coronal to typical filament tempera-

tures have been evaluated.



Bull. AAS, 12, 518 (1980).

25.07.03 Observations Linking X-Ray Bright Points wlth

the Source of the Mass Input to the Solar Wind, J.M. DAVIS,

AS&E - Davis and Golub (Bull. AAS, 8, 326, 1976) have shown

that the evolution of equatorial coronal holes is accom-

panied 5y an increase in the areal density of X-ray Bright

Points (XBP). Ahmad and Webb (Solar Phys., 58, 323, 1978)

have observed polar plumes located above XBPs, or XBP-llke

structures, and have hypothesized that XBP/plome combina-

tions could 5e the source of mass injection into the solar

wind. If this hypothesis is correct, then the plasma den-

sity of recurrent high speed solar wind _treams, whose

sources are located within equatorial coronal holes,

should be found to increase as the streams are observed

on successive rotstlons. Skylah and corresponding solaT

wind data have been analyzed and support this prediction.

The result appears to be a special case of a more general

relatlonshlp. For over this time period (May - December

i_73) the global averages of the solar wind density and

XBP number per unit area (27-day running averages) are

surprisingly well correlated. Preliminary analysis sug-

gests that the correlation holds over the whole solar

cycle wlth the average solar wind density showing the

same antlcorrelatlon wlth sunspot number as XBPs. If

the correlation holds over three separate time scales, it

increases the likelihood chat we are observing a direct

cause and effect relation.

This work was supported by NASA under con-

tract NAS5-25496.



Bull. AAS, 12, 916 (1980).

H._ Correlated Soft X-Ray and Microwave Observa-

tions of Active Region Loops. D.F. WEBB and J.M. DAVIS,

AS&E; M.R. KUNDU and T. VELUSAMY, Univ. of Maryland -

Correlated observations of solar soft X-rays and micro-

waves provide information on the density, temperature and

geometry, scale height and strength and direction of the

magnetic field of individual loops at coronal heights.

We report on the analysis of near simultaneous soft X-ray

and microwave observations with equivalent high spatial

resolution (I- 3 arc-sec) of CaK regions 16421 and 16419

on 16 November 1979. The X-ray data were obtained during

a sounding rocket flight at 1700 UT and the radio data

with the VIA at 6 cm from 1500- 1645 UT. Coallgned

photospheric magnetograms from Kitt Peak and Big Bear

Observatories and Ha filtergrams from Big Bear are also

compared with these data. The plasma and field param-

eters are estimated and used to deduce the relative

contribution of thermal bremsstrahlung and gyroresonance

absorption to the microwave emission within specific

structures. This work was supported, at AS&E, by NASA

under contract NAS5-25496 and at Maryland by NSF Grant
ATM 78-21762 and NASA Grant NGR 21-002-199.



Bull. AAS, 13, 821 (1981).

15.11 The Radiative Instability as a Mechanism for

Bright Point Flares. J.M. DAVIS and D.F. WEBB, AS&E -

X-ray images of a small, isolated, bright loop were ob-

tained during a sounding rocket flight on 31 January 1978.

Improved recording techniques enabled the loop to be re-

solved and its dimensions, diameter: I arc second,

length: 12 arc seconds, were measured. Its physical

properties were determined using broadband filter analysis

and it was found to be relatively cool and dense

(Ne % 7 x I0 l° em -I) for a coronal loop. The same analy-

sis indicates that the material surrounding the loop is

at a slightly higher temperature. This combination of

circumstances suggests that the loop is cooling and that

the bright emission is a consequence of the radiative

instability. A model for this behavior has been de-

veloped, The implication of the result as an explanation

of bright point flares in terms of the radiative insta-

bility is discussed. The work has been supported by NASA
under contract NAS5-25496.

¢
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h7.o6 Rebirth of the Polar Holes at Solar Maximum.

D.F. WEBB and J.M. DAVIS, AS&E-We examine observations

relating to the evolution of the global solar magnetic

field following sunspot maximum, when the net polar flux

switches polarity and coronal holes redevelop around the

poles. Sufficient data are now ayailable to permit a

study of this process through two consecutive solar

cycles. Synoptic He, He I - 10830 X, Mg X - 625 X,

magnetogram, and white light K-coronameter data are

compared with X-ray coronal images obtained from

sounding rockets at the maxima of cycles 20 and 21. We

find that the polar holes redevelop only a few solar

rotations after the time of the field reversal. The

general field evolution following maximum is similar

for both cycles, despite a marked contrast in their

sunspot activity. These results will be discussed in

the context of Babcock-type models for the solar cycle

evolution of the solar dynamo. Th_s work was supported

by NASA under contract NAS5-25496.



Fifth International Symposium on Solar-Terrestrial Physics,

COSPAR XXIV, 1982.

STP. II.2.4 DAVIS J.M. and KRIEGER A.S. (American Science and Engineering, Inc., Cambridge, MA,
USA). Cyclical Variations in Coronal Structure and Their Influence on the Solar
Wind.

A decade of solar X-rayobservations has demonstrated the existence of a cyclical

variability in large and small scale coronal structures, which contrast to the classical pattern of
the sunspot cycle. These structures appear, certainly under specific circumstances and perhaps more
generally, to control the parameters of the solar wind. Observations during the declining phase of

the 11-year cycle have shown that the evolution of coronal holes is accompanied by an increase, within
the hole boundary, of the areal density of X-ray Bright Points, which are small, magnetically bipolar,

coronal features. This increase is reflected in a similar increase in the plasma density of the high

speed stream associated with the coronal hole. This result appears to be a special case of a more
general relationship. For over a nlne-month period the global averages of solar wlnd density and
brlght point number per unit area are surprisingly well correlated. Explanatlons for this correlatlon
range from the hypothesis that the brlght points are themselves sources of mass flow into the solar
wind to a more general interpretation as a reflectlon of the dominant effect of the evolution of the
solar magnetic field upon both parameters. This work has been supported by NASA.
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I0.i0 The Spatial Distribution of 6 cm Gyroreso-

hence Emission from a FlarinK X-Ray Loop. D.F. WEBB,

J.M. DAVIS and S. KAHLER, AS&E; and M. KUNDU, U. MD - We

compare simultaneous high resolution soft X-ray and 6 cm

images of a flaring region to deduce the microwave emis-

sion mechanisms in that region. The photographic X-ray

images were obtained from an AS&E sounding rocket payload

flo_ on 7 November 1979. At 2050 UT the decay phase of

an M3 X-ray flare in Hale Region 16413 was observed.

During this time 6 cm observations of the region were

made with the VIA. Synthesis maps of radio brightness

temperature with a spatial resolution of about 5 arc sec

were then obtained. The X-ray images were converted to

deconvolved energy arrays which were used to obtain line-

of-sight emission integrals and average temperatures

throughout the region. The X-ray flare structure con-

sisted of a large loop system of length % 2 arc min and

average temperature % 8 x 106 K. Comparison of these

data to the aligned radio image showed that the peak

6 cm emission appeared to come from a region below the

X-ray loop. The predicted 6 cm flux due to thermal

bremsstrahlung calculated on the basis of the X-ray

parameters was about an order of magnitude less than

the observed flux. We model the loop geometry to ex-

amine emission expected from gyroresonance absorption

along the loop. Since the loop presents a wide range

of angles between the presumed magnetic field direction

and the line of sight, and gyroresonance emission is

strongly dependent on this angle, these data provide a

stringent test of this mechanism.
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34.08

Grazin d Incidence Relay Optics for X-Ray Astronomy

J.M. Davis and A.S. Krieger (AS&E)

Progress in solar and celestial X-ray astronomy is keyed

to the acquisition of high spatial resolution electronic

images. If the resolution is not to be detector limited

above i arc sec, plate scales in excess of 25_m arc sec -l,

corresponding to focal lengths greater than 5m are

required. In situations where the physical size of the

instrument is restricted, large plate scales can be

obtaineduslng grazing incidence relay optics to magnify

the image. We have developed such a secondary mirror

with externally polished hyperbolold-hyperbolold surfaces

to be used in conjunction with an existing Wolter-

Schwarzschild primary. The optic is located in front of

the primary focus and provides a magnification of 4.

This results in a plate scale of 28pm arc sec -I within an

instrument length of 1.9m. The design, specification,

fabrication and performance at visible and X-ray wave-

lengths of the system is described.
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SC/SS318-I0 0830H POSTER
HiqhTSpatial-Resolution Microwave and Soft

X-ray Observations as Diagnostic5 of Solar

Maqnetic Loops

G. D. HOLMAN (NASA/GSFC, LASP, Code 682,

Greenbelt, MD 20771)

D. F. _EB8 and J. M. DAVIS (AS&E, Fort

14ashington, Cambridge, MA 02139)

M. R. KUNDU (Astronomy Program, Univ. of

Maryland, College Park, MD 20742)

Simultaneous high-spatlal-resolution

microwave and soft X-ray observations of solar

magnetic loops, together with theoretical

_xlels for the loop emission, can provide

detailed information about the temperature,

density, and magnetic field within the loop,

as well as the environment around the loop.

VLA maps at 5 and 1.5 GHz, and soft X-ray

images obtained with a rocket payload, of

active region loops are analyzed. Models for

the microwave emission, which can be either

thermal gyroresonance (cyclotron) or free-free

emission, are developed and compared with the

observational results. I_ addition to
physical parameters, information about the age

ay._

magnetic and plasma structure of the loops is

obtained. The 1.5 GHz observations require

the presence of an external plasma around th E
3 x I0 K X-ray loops with a temperature _i0 _

X or less. These results emphasize the value

of obtaining high-spatial-resolution microwave
and simultaneous soft X-ray, and EUV, observa-

tions of magnetic loops on the sun.

%m.
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26.03

The Energy Spectra of Solar Flare Electrons

D. Moses (AS&E), P. Evenson (Bartol Res. Foundation),

P. Meyer (Enrico Ferm_ Inst./U. Chicago), and D. Hovestadt

(MPI for Extraterrestrial Phys.)

A survey of 45 interplanetary electron energy spectra from

0.I to I00 MeV originating from solar flares has been made

by the combination of data from two spectrometers onboard

the ISEE-3 (ICE) spacecraft. The observed spectral shapes

can be divided into two classes through the criteria of

fit to the so-called "standard" two step acceleration

model. This model involves an impulsive step that accel-

erates particles up to I00 keV and a second step that fur-

ther accelerates these particles up to 100 HeV by a single

shock. The spectral shape exhibited by one class of flares

is well fit by the model predictions while the spectral

shape of the second class of flares can be characterized

as being excessively hard above I MeV relative to the

model predictions. A correlation is found between the

electron spectral class of the observed flares and the

duration of the associated soft X-ray emission. Correla-

tions with soft X-ray and meter radio observations have

impl_cations for the relative importance of the impulsive

phase as well as energy losses during the shock accelera-
tion phase of the second class of flares.

This work was supported in part by NASA Contracts NAS5-

26680 and NAS5-25496 and NASA Grant bK;L-14-001-005.
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I0.08

High Resolution Soft X-Ray Solar Imaging Observations

During the Minimum Activity Phase of Solar Cycle 21

D. Moses, K. Hester (AS&E, Inc._ J. Davis (MSFC)

The new American Science and Engineering, Inc. High

Resolution Soft X-Ray Imaging Solar Rocket Payload is

scheduled for a sounding rocket flight in early June, 1987.

Part of the rocket observation program includes the first

attempted use of grazing incidence relay optics and a

CCD detector for soft X-ray solar astronomy. Additionally,

two programs of coordinated simultaneous multispectral

observations with ground, rocket, and spacecraft based

instrumentation are planned to investigate active region

loops and small scale coronal structure. Preliminary

results from these observations will be presented.
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19.04

Boundary ChanBes in Coronal Boles

S.W. Kahler (Emmanuel College) and J.D. Moses (American

Science and Engineering, Inc.)

Coronal holes are large scale regions of magnetically

open fields which are easily observed in solar soft

X-ray images. The properties of holes we=e extensively

studied using images from the AS&E X-ray telescope on

Skylab. The boundaries of coronal holes separate

large-scale regions of open and closed magnetic fields.

Photospheric motion of the field lines and magnetic

reeonnection will both contribute to changes in the

hole boundaries. Previous studies by Nolte and col-

leagues using Skyla5 images established that large

scale (!9 x 104 km) changes in coronal hole boundaries

were due to coronal processes, i.e., magnetic reconnee-

t_on, and not to photospheric motions. Those studies

were limited to sequences of images separated in time

by about one day, and no conclusion could be drawn

about the size and time scales of the reeonnection

process at hole boundaries. However, sequences of

appropriate Skylab images with a time resolution of

about 90 mln (one orbit) over periods of 6-10 hours are

available for times of the central meridian passages of

coronal holes I and 2. We are using these images to

search for hole boundary changes which can yield the

spatial and temporal scales of coronal magnetic

reconneetion.
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31.03

The Cg_resDondence Between Fine-Scal_ Structures _n the

Solar Corooa and Transition Re_ion

J.D. Moses (American Science and Engineering, Inc.), J.-

D.F. Bartoe, G.E. Brueckner, J.W. Cook, K.P. Dere (Naval

Research Lab), J.M. Davis (Marshall Space Flight Center),

and D. Webb (Emmanuel College)

Fine-scale structures at the 2 arc sec spatial scale

have previously been observed from space by soft x-ray

instruments viewing the corona and by EUV spectrographs

viewing transition region and chromospheric plasmas.

Transient phenomena with lifetimes from 20 s up to the

order of an hour are present. The lack of near

simultaneous x-ray and EUV observations has left the

correspondence between these coronal and transition region

fine-scale transient structure8 unclear. In an effort to

determine this correspondence, coordinated sounding rocket

flights were made by the AS&E High Resolution Soft X-Ray

Imaging Payload and the NRL High Resolution Telescope and

Spectrograph (HRTS) experiment from White Sands on Ii

December 1987, with launches at 1815 UT (AS&E) and 1845 UT

(NRL).

The AS&E experiment obtaine_ full disk coronal images
over the wavelenth range Z-64 A, emitted by 106 K plasmas,

with a spatial resolution of approximately 2 arc sec. The

HRTS spectrograph sllt length of 920 arc sec was rastered

in 2 arc sec steps across an approximately 3 arc min wide

area in the northwest quadrant, covering a quiet area out

to the solar limb. HRTS spectra were obtained of the C IV
O O

1548 A and 1550 A lines, emitted by transition region

plasmas at 105 K. We will present the co-registered

observations from the two experiments and discuss their

correspondence and interpretation.
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31.04

The Correspondence Between Small-Scale Coronal Structures

and the Evolving Solar Magnetic Field

D.F. Webb (Emmanuel Col.), J.D. Moses (A.S.&E.), J.M.

Davis (NASA/MSFC), J.W. Harvey (NSO/Tucson), S.F. Martin

and H. Zirin (Caltech)

Coronal bright points were first identified in soft X-ray

images. Such X-ray Bright Points (XBPs) are compact,

short-lived and associated with small bipolar magnetic

flux. Similar compact emission features have also been

detected at other coronal wavelengths, in the transition

region, and in the chromosphere. XBPs are globally

distributed and anticorrelated with the sunspot cycle.

Contadlctory studies have suggested either that XBPs

are a primary signature of the emerging flux spectrum of

the sun, or that they are representative of the annihi-

lation (reconnectlon) of preexisting flux. We present

results using coordinated data obtained during recent

X-ray rocket flights on 15 August and ii December 1987

to determine the correspondence of XBPs with ground-

based observations of He-I dark points, bipolar magnetic

structures, and the network. Time-series observations of

the photospheric magnetic field enable us to better

understand the evolution of the global solar magnetic

flux spectrum and its signatures higher in the atmosphere.
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50.05
AiGrazln_ Incidence Rei!ay Optics Telescope for Solar X-

Ray A_tronomy, Utilizing, a n X-Ray Sensitive CCD Detector

J.D. Moses (American Science and Engineering) and

J.M. Davis (Marshall Space Flight Center)

The first use in X-ray astronomy of a grazing incidence

relay optic or an X-ray sensitive CCD detector has been

demonstrated by the new AS&E Ultrahigh Resolution Soft

X-Ray Solar Research Rocket Payload during successful

sounding rocket flights on ]5 August 1987 and ]i Decem-

ber 1987. These flights provided the first implementa-

tion of the new X-ray secondary mirror which consists

of 3.8X magnifying hyperboloid-hyperboloid grazing

incidence relay optic used in conjunction with an

existing Wolter-I primary mirror. An RCA CID series

CCD detector was utilized in a thinned, backside-

illuminated configuration for this payload. The 5.4 m

effective focal length of the compound optics system

resulted in a plate scale of I arc second per pixel

which is comparable to the inherent resolution of the

primary mirror. These observations and the preliminary

results of our data analysis will be presented.
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25.03

Solar C_c.l.e.. Variation of the X-Ray Bright Point

Population: New Observations

J.D. Moses (American Science and Engineering) and

J.M. Davis (NASA/MSFC)

New observations from flights of the AS&E High Resolu-

tion Soft X-Ray Imaging Solar Research Rocket Payload on

15 August 1987 and 11 December 1987 provide an extension

of the previous X-ray bright point population data set

into the ascent to maximum of solar cycle 22. Soft

X-ray observations from Skylab and rocket flights over

the period 1970-1981 show that the number of Z-ray

bright points varies inversely with the sunspot index

(J.M. Davis, 1983, Solar Phys. 88, 337). The new X-ray

bright point counts will be compared with the first

order prediction extrapolated from solar cycles 20 and

21: NXB P = 421.1 NSS -2/3 where NXB P is the corrected

X-ray bright point count and NSS is the weekly average

international sunspot number. This result will be

discussed Jn terms of the solar cycle evolution of the

structure of the coronal magnetic field.
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32.08

Comparison of Soft X-Ray Broadband and Emission Line

Temperature Diagnostics for Active Region Loops in the
Solar Corona

K. Waljeski (Brandeis University), J.D. Moses (American

Science and Engineering, Inc.), J.R.L. Saba and

K.T. Strong (Lockheed Palo Alto Research Laboratory)

Simultaneous observations of solar active region AR 4901

were made on ii December 1987 by the Solar Maximum

Mission X-Ray Polychromator and the AS&E Soft X-Ray High

Resolution Imaging Sounding Rocket Payload. From these

observations, a comparison is made of coronal plasma

temperature diagnostics by two techniques: (I) broadband

X-ray spectroscopy and (2) emission-line X-ray spec-

troscopy. A first order comparison is made assuming

that the plasma in the emitting region is isothermal.

The line intensity ratios of Fe XVII:Fe XVIII, Fe

XVII:Mg XI, O VIII:No IX, Mg XI:Ne IX, 0 VIII:Fe XVIII,

Mg XI:Fe XVIII, and Fe XVIII:Ne IX are used as tempera-

ture diagnostics for the line spectra. The ratio of the

energy flux through an organic filter and a beryllium

filter is used as a temperature diagnostic for the

broadband images.

k
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14.03

Soft X-Ray Transmission Gratin_ Spectroscop? for Solar
Observations Revisited

J.D. Moses (AS&E) and J.M. Davis (NASA/MSFC)

Recent advances in soft X-ray objective grating design

and fabrlcation as well as X-ray detector technology

have dramatically improved the potential performance of

soft X-ray transmission grating spectrographs. Trans-

mission grating spectrographs have previously been used

for solar physics on an AS&E sounding rocket flight

(Valana et al., 1968, Science 161, 564) and the AS&E

Skylab instrument (Silk et al., 1974, Oss. Mem. Oss. di

Arcentri I04, 143). The success of these applications

was limlted by s lack of spectral and spatial resolution

due to the aberrations inherent in the optical design.

A practical optical design described Beuermann, Braun-

ingero and Trumper (1978, App. Opt. 17, 2304) based on a

grating consisting of a group of individual facets can

he optimized to reduce primary coma and astigmatism to

levels below the resolutlon of X-ray telescopes. The

AXAF High Energy Transmission Grating (HETG) instrument

uses this design and, through HETG development, gratings

which will give spectral resolutlon of about 1000 have

been developed and tested (e.g., Schattenburg et al,,

1988, SPIE 982, 210). We will present instrument simu-

lations of HETG quality facet transmission gratings in

combination with both the existing AS&E High Resolutlon

Soft X-Ray Imaging Soundln 8 Rocket Payload and a "new

technology" Wolter-I mirror (at the level of the AXAF

Test Mirror Assembly). We find for the existing optics

that the 0 VII triplet (22 Angstroms) can be resolved

for objects smaller than 20 arc seconds (e.g.. X-ray

Bright Points) directly provide a plasma density

diagnostic. We find for optics with 0.5 arc second

resolution that Doppler velocities of 100 km/sec can be
observed.
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SOFT X-RAY ASTRONOMY USING

GRAZING INCIDENCE OPTICS

John M, Davis

American Science and Engineering, Inc.

Cambridge, Massachusetts 02139 USA

ABSTRACT

The instrumental background of X-ray astronomy with an empha-
sis on high resolution imagery is outlined. Optical and

system performance, in terms of resolution, are compared and

methods for improving the latter in finite length instruments

described, The method of analysis o£ broadband images to ob-

tain diagnostic information is described and is applied to

the analysis of coronal structures.

1. Instrumental Background

Although X-rays are characterized by their ability to penetrate matter

classlcal dispersion theory shows that below a crltical angle, X-rays, incident

on a denser medium will undergo total external reflectlon. The critical angle,

defined in terms of atomic constants, is

= [ e2 Z_N] I/2@c Trmc2 A _,

and is shown for a variety of materials in

Figure I. These angles fall in the range

of a few degrees and therefore X-ray opti-

cal systems have to be designed with their

reflecting surfaces nearly parallel to

their optical axis. For a parabola, this

means using the far zone of the surface.

However, this region of the surface does

not satisfy the Abbe sine condition and

the image suffers from coma, i.e., a point

source will be imaged as a circle having

an angular radius equal to the displace-

ment of the point source from the optical
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P/.gure 1. The vari,_C_on of the critlcsl

angle ultb wavelevgtb for

several materials.

axis. This can be minimized by introducing a second reflecting surface

(Wolter, 1952) and in the X-ray region a paraboloid-hyperboloid combination is

most commonly used.

For the past 20 years we, at AS&E, have stressed the importance of high

resolution imagery. The resolution of a particular system is a combination of

the resolution of the optics, which is established by the manufacturing toler-

ances, and of the detecting system. X-ray mirrors can be made with angular
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resolution of l arc second. Rowever, even when film has been used, most X-ray

images have been limited by the detector. In the future, when the missions

dictate the use of electronic imaging detectors, with relative coarse picture

elements, compared to film, the situation will be worse unless the images can

be made correspondingly larger. If longer focal lengths are prohibited, mag-

nlfying optics provide the only alternative. Two types of systems are shown in

Figure 2. We are developing the second, which uses hyperboloid-hyperbolold

GRAZING |NCIDENCE SECONDARY OPTICS
CONVERGING

MAGNIFIER

_+ 1.45m _i_ 0.72m

SECONOARY

PRIME FOCUS SECONDARY FOCUS

PLATE SCALE I_..ATE SCAL I_

7#m {ere lec.) -I 28p. m (arc sac.) -I

MAGNIFIERDIVERGING CONVERGING _ /

_ ANGLE _ 12' \ CONVERGING /
SECONDARY

OPTIC

I_ 1.45m .;
1.89m -:

Filr.ure 2, D£elrmml of tbe tvo poll_ble deeilal for lecoadar 7 lraztn$ ia-

cldeace optics. The d|mensioas refer to lyet_e based on In

ezietiu$ primary mirror -rid • m,_nificet/on of 4.

optics (Davis et el., 1984) since it combines the greatest magnification in the

shortest length. Currently magnifications of 4 are near the practical limit

set by the tolerance on the axial slope. The difficulties in this approach are

that it adds two extra reflections, requiring extra smooth surfaces, and pro-

vides images with a field of view limlted to a few square arc minutes.

2. Method of Analysis

To extract the properties of the coronal plasma (temperature, density and

pressure) from the images, we relate them to the focal plane irrediance through

the use of a model spectrum (Valana et al., 1977). The spectrum gives the

pc_er emitted by unit volume of plasma with density _e at temperature T in the

wavelength range A_. If this incident spectrum is focussed by a telescope and
the beam passed through a filter, the instrument will detect a spectrum that

has been modified by the reflection efficiency of the mirrors and the transmis-

sion of the filter. By using more then one filter, different integrals of the

spectrum viii be sampled. Using the model spectrum, we can form ratios of the

filter transmissions to create spectral hardness indices as a function of tem-

peratures. These allow pairs of images to be converted into temperature maps

and once the temperature is known2tbe focal plane irrediance can be converted
into emission measure, or the fNe dl, along the line of sight. Finally, if the

geometry of the emitting structure is known, a density can be evaluated. Since

the spectrum consists of I large number of lines and continuum, this method has

the advantage of averaging and, since in general no single llne, ion or

continuum process is dominant, the impact of uncertainties in atomic parameters
and element abundances is minimized.
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3. Physlcal Properties of Loops

Soft X-ray observations have dispelled the idea of a vertically layered

corona and have replaced it by a view dominated by magnetic loops on all spa-

tlal scales. The loops are long lived and therefore _ust exist in an equi-

librium state where the power losses, though conduction and radiationj must

balance the power inputs. The sources and mechanisms of the latter remain a

mystery. Figure 3 is a schematic representation of the power loss as a func-

tion of temperature for a coronal loop.

POWER tOSS AS A FUNCTION OF TEMPERATURE

FOR A CORONAL ARCH

_02 I I I I _ I II I I 1 I I I I [ _

\\\  oRo o,l
_ _ DOMINAT'E,D /

____OTAL RESlMEy

RADIATION _ _ _,_ /_I
ooMt_o \_\_//I

i I01 REGIME _ O

_ION

Pco.o ./

lOl|o 5 ' I 10I I I l I ii[ S I I I t 1 i _ I0 ?

TEMPERATURE - *K
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of • ¢oron,1 arch on it, t_perature.

Shown are the conductive losses which ar_ _oportional to T 5/2 and the radia-
tive losses which are proportional to Ne T at coronal temperatures. The total

power loss is the sum of these curves which has a minimum at a certain

temperature. An equilibrium will exist when the power supply heating the loop
balances the radiative and conductive losses. For the equilibrium to be stable

the loop must exist on the conduction dominated branch of the total loss curve
where small fluctuations in the power supply can be compensated by moving to a

new equilibrium state. For instance if the heating supply decreases, the tem-

perature will fall and although the radiation losses increase with falling tem-

perature the conduction losses which are the dominant loss mechanism at these

temperatures decrease sufficiently to allow a new equilibrium to be established

at a slightly lover temperature. An increase in the heating supply will result

in a new equilibrium at s higher temperature.

This is not the case if the loop exists on the radiation dominated branch

of the total loss curve. Here where the radiation losses dominate the conduc-

tion losses a reduction in the heating supply leading to a decrease in tempera-

ture will result in an increase in the total losses which cannot be conduction

stabilized st coronal temperatures and the loop will cooi. This phenomenon is

known as the radiative instability.
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To reach this equilibrium state chromospheric 'evaporation' is invoked to

fill the magnetic loop with coronal material. The process can be visualized by
realizing that if power is dissipated in a magnetic structure, it will cause
the material within the structure to rise rapidly in temperature because of its

low thermal capacity, its low radiation losses and the negative temperature

coefficient of the loss term. The eventual result will be that the majority of

the dissipated power will be conducted to the chromosphere/transition region

where it will heat that material to coronal temperatures which will allow it to

rise and fill the loop. The increased radiation losses of the now dense loop

will allow an equilibrium state to be reached. These ideas are discussed by
Pye et al. (1978).

They have been used by Davis and Krieger (1982) to show how filaments could

condense from corona] loops. This hypothesis was based on the observation that

filament channels, i.e., regions in which the U-alpha data show a field struc-

ture identical to that surrounding the filament but where no filament exists,

are located beneath arcades of coronal loops and that the quantity of material
within the arcade is sufficient to form the filament.

In another study where we had obtained images using a finer grain emulsion than

used on Skylab, we were able to evaluate the plasma parameters of a small

bright loop, tentatively identified as a flaring bright point. The loop y_s 1_
arc sec long by I arc sec _ide and we found a density in excess of 2 x i0 cm-
at a temperature of 2 x 10 v K. This low temperature is uncharacteristic of

typical flare phenomena. Since the dimensions of the loop were known, we were

able to calculate the total loss curves as a function of temperature. When the

loop was located on the appropriate curve, it was found to exist on the

radiation dominated branch of the curve and thus to be radiatively unstable. It

is unlikely that the temperature determination could be in error by the amount

necessary to place the arch on _he conduction dominated branch for this would
require temperatures above 6 x 10VK which are ruled out by the observation.

Therefore, we appear to have an example of a bright loop cooling through the

radiative instability. This identification depended critically on our ability,

through the availability of high resolution images, to define the dimensions of

the loop which allowed us to convert an emission measure into density.

This example and many others have confirmed our firmly held belief in the

importance of obtaining images with the highest possible resolution if the

secrets of the corona are to be revealed.
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X-RAY BRIGHT POINTS AND THE SOLAR CYCLE

DEPENDENCE OF EMERGING MAGNETIC FLUX

John M. Davis

American Science and Engineering, Inc.

955 Massachusetts Avenue

Cambridge, Massachusetts 02 139

ABSTRACT

Soft X-ray imaging of the solar corona during the period 1970 to 1978 has re-

sulted in significant modifications to our view of the solar cycle vCith respect to

both the properties of the large scale (coronal holes) and small scale _[-ray Bright

Points) solar magnetic field. In the latter case the particular contribution is to the

emerging magnetic flux. Sounding rocket observations combined with the Skylab

data indicate that the XBP are anticorrelated with sunspot number and are the domi-

nant oontrlbutors to the total emerging flux spectrum during all but the maximum

phase of the solar cycle. A continuous data set covering a complete cycle would

enable the validity of this result, which has serious implications for the nature of

the solar dynamo, to be confirmed.

1.0 INTRODUCTION

Since the early sixties NASA has supported a program of high spatial resolu-

tion solar X-ray astronomy at AS&E. One of the prime objectives of this program

has been the study of both the large and small scale variations occurring in the

corona during the ll-year solar cycle. The studies have used the data from sounding

rocket flights and Skylab; the latter providing a major contribution by establishing

a baseline against which the sounding rocket observations can be compared.

During the first decade of the program major advances were made in the fabri-

cation of the X-ray optics, in the preparation of the broadband filters used to select

the various soft X-ray wavelength ranges and in the development of suitable photo-

graphic emulsions which are used as the recording medium. These three areas of

development had all reached fruition by 1970 and produced for the first time the

high quality X-ray images to which we have now grown accustomed. A panoramic

representation of these data is shown in Figure 1 where images from 6 rocket



flights and 3 representative Skylab photographs are combined. The images cover

the period 1970 to 1978 and show all the phases of the solar cycle except solar

maximum, for which period no images of comparable quality exist. The combination

of high resolution and sensitivity has revealed many new phenomena of which two

have a direct bearing on the cyclical behavior of the solar magnetic field. The

unique contribution of the X-ray images has been to clearly and unambiguously

identify phenomena whose signatures, although present in the records of the photo-

spheric magnetic field, tend to be obscured by a wealth of confusing detail.

2. CORONAL HOLES AND X-RAY BRIGHT POINTS

Historically the first major result of the program was the unambiguous identi-

fication of coronal holes followed by the recognition that equatorial coronal holes

were the elusive 'M-Regions' which give rise to geomagnetic storms by their in-

fluence on the velocity pattern of the solar wind. Although coronal holes had been

tentatively identified earlier on the basis of ground-based observations (Waldmeier,

1957) and low resolution X-ray pinhole and XUV heliograms (Russell and Pounds,

1966; Austin et al., 1967), they attracted little interest primarily because they

were not clearly defined entities. However, three different groups reintroduced

the subject almost simultaneously (Altschuler et al., 1972; Munro and Withbroe,

1972; Krieger et al., 1973) just prior to Skylab. The subsequent high resolution

X-ray images obtained during Skylab ignited a general interest in the study of

these indicators of the large scale structure of the solar magnetic field. Several

categories, based on their heliographic location, are known each having a charac-

teristic relationship to the solar cycle; for instance, the recurrent equatorial holes

are present only during the declining phase of the solar cycle, while the polar

holes are always present except perhaps during solar maximum. Although coronal

holes can now be identified from ground-based observations, notably the He 10830

line, the reconfiguration of the magnetic field which occurs as their boundaries

expand or recede is best studied with X-ray or XUV observations.

The X-ray observations have also shed light on the small scale structure of

the magnetic field following the observation and classification of the features known
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as X-ray Bright Points (XBP). XBPs are small, compact, short-lived, magnetically

bipolar regions whose size and lifetime spectra blend into the corresponding active

region spectra.

Their major significance results from their identification as sources of emerging

magnetic flux. The relationship of XBPs to the general solar field is still not under-

stood. However what is clear is that the emerging magnetic flux associated with

XBPs differs radically from that associated with active regions in at least two ways.

The first, discovered from the Skylab observations, is that the XBP are distributed

more or less uniformly over the solar surface in sharp contrast to the active regions

which are limited to the equatorial band (Golub et al., 1974, 1975). The observa-

tions do suggest that there are two components to the bright point distribution, one

associated with the active region latitudes and the second uniformly distributed

over the entire disk.

The second difference is their variation with the solar cycle which appears

to run counter to the well-known _sunspot cycle.

3. THE SOLAR CYCLE VARIATION

A basic limitation of the Skylab study was that it covered only a short period

(8 months) of the solar cycle and consequently the conclusions drawn from this

period may not be typical of solar conditions throughout the 11-year cycle. To

augment these data, four sounding rockets have been flown since Skylab and in

particular two flights were made in September and November 1976 close to solar

minimum. On both these occasions the X-ray images revealed that the corona was

composed of low-lying weakly emitting structures, interspersed with very large

numbers of XBPs. Coronal holes were visible at both poles, however, there was

no evidence of the large equatorial holes which were so characteristic of the de-

clining phase.

The most obvious and striking difference was the large number of XBPs. In

order to compare their number with those from the Skylab period, the relative ef-

ficiencies of the two rocket telescopes were evaluated and compared to the Skylab
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telescope. Using these ratios the closest comparable rocket exposures were

selected and were used to establish the bright point counts.

The major result of the investigation is shown in Figure 2 where the relative

numbers of XBP in 1973 and 1976 are compared (Davis et al., 1977). The 124 daily

averages from 1973 are plotted in the form of a histogram showing the frequency of

occurrence of each number count. The histogram approximates to a Gaussian dis-

tribution, eventhough there were persistent non-random variations during the eight

rotations observed, and the mean (39) and its standard deviation (! 3) have been

used to characterize the distribution. The values observed in 1976 are indicated

by arrows and lie well outside the range of values recorded in 1973.

After scaling the 1976 values are 90 +__8 and 75 x 9. They are both consis-

tent with a substantial increase in the number of bright points occurring between

1973 and 1976. In fact the average of the two 1976 observations, 83, is ll0 per-

cent higher than the combined average, 39, of the 1973 data. Under the assump-

tion that the data from both 1973 and 1976 belongs to the same Gaussian frequency

distribution, the probability that two random observations will result in the 1976

value is found to be 1 in 5 x l06. Even using the lower bounds for the 1976 obser-

vations, thus maximizing the probability, the chance of making the observations

is still only 1 in 2 x l05. We realize that because of deviations from a Gaussian

distribution these probabilities are not strictly true but even so the inescapable

conclusion remains that the 1976 data belong to a different frequency distribution

with a higher mean value.

In Figure 3 we show the latitude distribution of XBP seen on the two 1976

images, compared with the 1973 average. The 1976 data show much larger error

bars since only two photographs were available. However, it is clear from the

figure that there were more XBP at all latitudes in 1976 than in 1973, with the

possible exception of the extreme polar latitudes where the statistical sample is

small. Thus it is clear that the emergence of small-scale magnetic flux regions

at solar minimum does not follow the pattern set by the larger active regions.

Unfortunately, further details of the behavior within restricted latitude intervals

cannot be deduced because of the limited statistics of the data sample.



The increase in the number of XBP is even more significant when compared

to the changes in the other indices of solar activity between 1973 and 1976. For

instance the average relative sunspot number, R z, for the Skylab period, May to

November 1973, was 35 whereas the index for January to December 1976 averaged

13. Thus while the sunspot number has declined by a factor of 3, the number of

XBPs has increased by over a factor of 2. The implication of this result is that

XBPs vary out of phase with the solar cycle as measured by the usual indicators

of activity.

To explore this possibility further we have reexamined data from the older

rocket flights going back to 1970 and the two other post-Skylab flights. Following

a careful calibration program to compensate for the instrumental differences, a

consistent pattern of anticorrelation between sunspot number and bright point count

is found. The data are summarized in Figure 4 where we show the variation with

time of R and XBP number, both normalized to maximum values of 100, over the
Z

last sunspot cycle. It is apparent that the variation in XBP count is close to 180 °

out of phase with R . This demonstrates that XBP must represent magnetic flux
Z

which emerges independently of the active regions. For if the emergence of XBPs

was somehow associated with the emergence of the larger active regions (e.g.,

if the XBP represented either precursors or remnants of the larger active regions),

then the bright point count could not lead or lag R by much more than the charac-
Z

teristic lifetime of the flux associated with the active regions (~ 6 months).

Instead the observed phase lag is closer to 6 years. Therefore, in order to de-

termine the total magnetic flux emerging at the solar surface at any time, it is

necessary to sum the magnetic flux represented by the XBPs with that represented

by the active regions.

4. IMPROTANCE OF THE RESULT

The last conclusion, that in order to determine the total magnetic flux emerging

from the solar surface, it is necessary to sum both the XBP and active region com-

ponents, provides the significance to the observations. For now, the possibility

exists that the amount of magnetic flux emerging throughout the cycle is constant

or even that the total increases at solar minimum.



Comparison of the X-ray data with high resolution magnetograms shows that

on average XBP emerge with 2 - 3 x 1019 Mx of flux (Harvey et al., 1975; Oolub

et al., 1977). Although this is more than an order of magnitude less than for

active regions, because of their large number, XBP contributed 80 percent of the

total of all emerging magnetic flux at the time of the Skylab observations. Under

the assumptions that the XBPs seen in all of the rocket flights are physically the

same so that the characteristic value of 3 x 1019 M per bright point can be used
X

for all the data, and that the sunspot index R may be used as a relative indicator
Z

of the amount of flux emerging in the form of active regions throughout the solar

cycle, it is possible to proceed to estimate the relative contributions of XBP and

active regions to the total magnetic flux spectrum of the sun during the period 1970

to 1978. By taking the 1973 fraction of 80 percent as a base, we estimate that ~40

percent of the total magnetic flux in 1970 emerged in the form of XBP. The contri-

bution of XBPs to the total reached a peak of ~ 95 percent in 1976 and has since

declined to about 70 percent in early 1978. From this analysis we conclude that

XBPs make a substantial contribution to the total emerging magnetic flux spectrum

throughout the entire solar cycle and are the dominant contributors throughout the

declining, minimum and ascending phase s.

5. CONCLUSIONS

High resolution X-ray images of the solar corona contribute to the study of

the solar magnetic field by revealing, in a unique manner, the topology of the ex-

tension of that field into the corona. It is extremely difficult, if not impossible,

to obtain this information in other ways, for instance by extrapolating the mea-

surements of the photospheric magnetic field because this requires theoretical

modelling, e.g., potential field calculations, which results in, at best, an

approximation to the real situation.

The X-ray images, although recorded only during brief intervals over the last

decade, have revealed two new facets of the behavior of the solar magnetic field

which must be explained in any comprehensive theory of its origin and variability.

In particular it has been learned that XBFs represent a dominant feature of the
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emerging magnetic flux spectrum through the majority of the solar cycle. In fact

they display a counter cycle to the better known sunspot cycle and at this time the

relative importance of the two cycles to the actual description of the solar dynamo

is not known. Because of the limited number of data samples, the statistics of the

observations over a solar cycle are not high and other contributions of XBPs to the

complete picture of the solar magnetic field almost certainly re main to be discovered.

An example is their latitude distribution which is known to differ markedly from that

of active regions but whose possible cyclical variation is completely unknown.

In this context the SCADM mission presents a unique and valuable opportunity

to obtain an uninterrupted, long duration sample of coronal observations. In the

recording of these data, the value of high sensitivity, high resolution observations

cannot be overemphasized. For although both XBPs and coronal holes are visible,

in retrospect, in the X-ray images made prior to 1970 their importance was not

realized at the time because the lack of definition in the observations did not allow

a-positive and unambiguous identification to be made. Since the coronal observa-

tions will still be to some extent exploratory, the preliminary planning for the

SCADM spacecraft must reflect the requirement for imaging data with comparable

quality to those of current rocket programs.
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Figure i. Coronal X-ray observations during the period 1970-1978.
A collection of images from sounding rockets and Skylab.
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Abstract

A program of solar X-ray astronomy using grazing incidence optics has culminated in X-ray images of the

corona having one arc second spatial resolution. These images have demonstrated that in general X-ray optics

can be fabricated to their specifications and can provide the level of resolution for which they are designed.

Several aspects of these programs relating to the performance of X-ray optics in regard to resolution, including

the point response function, the variation of resolution with off-axis position and the recognition that nearly

all solar X-ray images have been film limited, are discussed. By extending the experience gained on this and

other programs it is clearly possible to design and fabricate X-ray optics with sub-arc second resolution. The

performance required to meet the scientific objectivesforthe remainder of the century are discussed in relation

toAXIO, an Advanced X-Ray Imaging Observatory for solar observations which is proposed for flight on the

space shuttle. Several configurations of AXIO are described, each of which would be a major step in the quest

for ultra-high re solutiop observations.

Introduction

The majority of the contributions to this workshop have described the application of grazing incidence

optics to celestial X-ray astronomy. Although this is not surprising, in light of the dramatic results from the

HEAO-2/Einstein mission, it should not be allowed to completely overshadow either the achievements or the

requirements of that branch of X-ray astronomy devoted to the study of the solar corona. Our current abilities

in this field represent the culmination of fifteen to twenty years of experimentation at several laboratories

throughout the United States and Europe. The scientific results from these studies have suggested that the

understanding and detailed interpretation of the physics of the corona will require observations with a much

higher spatial resolution than has been achieved to date; which fact provides the incentive for this paper.

Any discussion of the design and performance specifications of grazing incidence telescopes must recog-

nize that there exist significant differences in the requirements placed on the observations by the objectives of

solar and celestial X-ray astronomy. These differences are reflected in the way the performance of the instru-

ments is described. Solar X-ray images are views of a highly structured object of considerable extent. Point

to point variations of intensity within the image, which after analysis can be converted into electron tempera-

ture, density and pressure measurements, are important. In contrast celestial observations are frequently

limited to the study of one or more, but never very many, point sources within the field of view, whose internal

structure is unresolved. Consequently for solar observations, the requirement of high spatial resolution re-

flects the more general optical application in which the performance of an imaging system is represented by its

modulation transfer function (MTF). In contrast the advantage of high resolution in celestial imaging systems

is to improve the sensitivity of the instrument by concentrating the flux from a particular object within a single

image element. This improves the sensitivity by increasing the signal to noise ratio of the observation thus

allowing the detection of fainter and presumably more distant and hence cosmologically interesting objects. In

the celestial case it is convenient to describe the performance of the grazing incidence mirror in terms of the

RMS blur circle radius of the image of a point source, since this indicates the efficiency with which the re-

flected energy is concentrated in the image plane.

Since the objective in solar physics is to distinguish discrete structures, identify their boundaries, de-

scribe their geometry and differentiate between the plasma conditions inside and outside these structures, it is

possible to define the level of resolution achieved in practice by reference to the observations. The Skylab

telescopes and the mirror used in our current rocket program produce images having a realistic resolution when

defined in this way of a few (2 -5) arc seconds. However it must be realized that the observed resolution of

these instruments is theresult of folding together the transfer functions of both the optics and the detector.

The latter has usually been photographic film and, as we will show later, all the recent solar images, but one,

recorded to date have been limited by the film rather than by the optics. This type of performance, i.e., the

ability to resolve structures at the 2-5 arc second level will be referred to as high resolution. The term ultra-

high will refer to roughly an order of magnitude improvement over existing instruments, that is, to sub-arc

second resolution with limiting values of 0. 1 to 0.2 arc second.
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We believe that this level of resolution is necessary if further significant advances in our understanding

of coronal physics are to be made. Moreover, we are confident that the technology now exists, not only for

the fabrication of ultra-high performance grazing incidence mirrors, but also with the development of the space

shuttle to carry these large instruments into orbit. Together these facts make the serious consideration of the

next generation of solar X-ray telescopes both meaningful and worthwhile.

Characterizing the Performance of Grazing Incidence Optics

The Point Response Function

The performance of X-ray grazing incidence optics is usually described in terms of two quantities: the

point response function (PRF) of the mirror, and the variation of the RMS blur circle radius as a function of

off-axls position. The PRF describes the fraction of the reflected intensity which falls within a given radius of

the central maximum and it is determined experimentally. In general the PRF can be considered as the sum of

two separate distributions which are composed of the specularly reflected rays and of the surface scattered

rays respectively. The specularly reflected component forms a narrow central peak which is characterized by

its HVVHM. It is a measure of the accuracy of the figure of the mirror surfaces and its magnitude can be

directly related to their tolerances. The scattered distribution tends to be broad and flat and it can be de-

scribed by the half power radius, i.e., by the radius within which 50 percent of the reflected energy is con-

tained. The presence of the broad 'wings' of the scattering distribution, which extend out to at least 15 arc

minutes, means that the power in the image is spread out over a large angular area. These terms can be dem-

onstrated by the comparison of the PRFs of the Skylab and rocket mirrors which are shown in Figure I.
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Fig. 1. A comparison of the inner region of the PRFs of the rocket and Skylab mirrors at 8 and 44 _.

The Skylab mirrors (1) are a _sted pair of Wolter Type I paraboloid-hyperboloids. They were fabricated

from beryllium with superpolished '"' electroless nickel (Kanigen) reflecting surfaces. The rocket mirror is also

a Wolter Type I design, but it has Wolter Schwarzchlld surfaces which, although more difficult to fabricate,

were chosen over the more normal paraboloid-hyperboloid surfaces since they satisfy the Abb_ sine condition

and therefore eliminate the coma aberration for paraxial rays (3). It was chosen to fabricate the mirror from

fused silica on the basis of a test program which evaluated the scattering of X-rays from highly polished flats.

The results of this program indicated that fused silica was superior to all other metals and glasses available

at that time.

The HWHM of the rocket mirror PRF is approximately 1 arc second while the corresponding value for the

Skylab mirror is roughly twice as large. The half power radii are respectively 31 and 48 arc seconds at 8

and 18 arc seconds for both mirrors at 44 _. Inspection of the data recorded in Figure I shows that the rocket

mirror PRFs have very little dependence on wavelength and further that the PRFs of the two mirrors are quite
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similar at 44 _. These data can be interpreted as an indication that the surface roughness for the Skylab mirror

is small compared to 44 _ but not to 8 _ while the surface roughness of the rocket mirror which is beginning to

affect the PRF at 8 _ may be of this order.

Both these mirrors were fabricated over seven years ago and represent a rather early stage of surface

polishing technology. In particular our ability to measure surface smoothness was limited .and this was re-

flected in the mirror specification for surface smoothness. In contrast the HEAD-2 mirrors(4)are the latest

stage in this technology and demonstrate the improvements in our ability not only to make mirrors of very large

size but more importantly with very smooth reflecting surfaces. By comparison the half power radii for 8 and

44 _ radiation are respectively 6 and 4 arc seconds (5) These values reflect the average smoothness for all the

mirrors in the nested set and the surface achieved on the smoothest mirror would be adequate for the next gen-

eration sub-arc second telescope.

The Off-Axis Resolution of Grazinq Incidence Optics

In order to introduce the topic of the off-axis re- BACKFOCAL
SURFACE

sponse of grazing incidence mirrors we will first dis-

cuss a method we have developed for determining the

location of the focal plane. In the past modified

Focault tests, Hartmann cameras or other techniques

which determine the focus for on-axis rays have been

used. However, the focal plane of an X-ray mirror is

not flat but is curved and when the objective is to

image a broad source, such as the sun, an adjustment

has to be made from the measured positionto compen-

sate for the different focus of the off-axis rays. In

general the optimum focus for an on-axis ray is located
OPTIMUM

behind the same position for an off-axis ray (Figure 2). FOCALPLANE

To overcome the need for an adjustment we have de-

veloped a simple procedure which allows us to specify

the optimum focal plane for a broad source.

The procedure uses a star pattern of resolution

targets. Each block in the star contains 5 groups (II

through VI) of a USAF resolution target. F,ach group

A STAR PATTERN

FOCAL

/ SURFACE L_
z
:E

OPTICAL AXIS _ _ L) _ _] _]

0 F ] EACH SQUARE

REPRESENTS A

F] USAF TARGET

T
w 24 ARC MIN _-

DEPTH OF FOCUS

OF X-RAY OPTICS

Fig. 2. Schematic representation of the mirror focal

plane and the star pattern used in its location.

contains 6 patterns containing 3 vertical and 3 horizontal bars with each pattern reduced in size by 6"J_ from its

predecessor. A set of focus plates is taken with the flight camera as its position is varied along the optical

axis and the resulting images are observed with a microscope. Rather than obtaining the best focal position by

inspection, we have placed the procedure on a numerical basis by calculating a Figure of Merit (FoM) which

reflects the resolution across the field of view.

The FoM is determined in the following way:

(i) Each pattern in each group is assigned a numerical value starting with II-1, which is set equal to

unity, and increasing by one for each succeeding (i.e., decreasing) pattern. Thus,

II-i 1

II-2 - 2

,. • • °.

11-6 _ 6

III-I :_ 7, etc.

i.e., the patterns with better resolution are assigned higher numbers.

(ii) Three exposures of the star pattern are taken at each focal position to eliminate (or minimize) the

effects of Schlieren due to air turbulence. The smallest horizontal and vertical patterns, which are

resolvable in each exposure, are recorded for each position in the star. The average of the smallest

horizontal and vertical pattern resolved is computed and recorded for each position (Figure 3).

(iii) The sum of the averages from each position in the star is recorded and is used as an indicator or

FoM for the resolution across the field of view at that focal position.

A typical set of data obtained with the fused silica rocket mirror is shown in Figure 4. The two sets of

points correspond to the orthogonal directions in the focal plane formed by the star pattern. The data shows a
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plateau where the average resolution is better thanl arc second (FoM > 80) which we interpret as the effective

depth of field. The 1 arc second level of resolution at the plateau is predominantly a function of the recording

medium for, if a finer grain film is used, the effective resolution improves to close to 0.5 arc second (FoM

= 116) which is near the diffraction limit for visible light for this mirror.

Although we believe that this is a useful method for determining the focal plane of grazing incidence

mirrors, we have introduced it to illustrate a different point; namely, the off-axis response of the mirror or the

variation of resolution with distance from the optical axis. In general our knowledge of the off-axls perfor-

mance of grazing incidence mirrors is obtained from ray-tracing calculations. These calculations are based on

purely geometrical optics and make no allowance for diffraction effects or for the X-ray PRF. They describe the

off-axis response in terms of the RMS radius of the blur circle formed of a point object. In general this radius

increases monotonically with the angular distance of the source from the optical axis for both flat and curved

focal surfaces. However, when we analyze the focus plates, as described above, it is immediately apparent
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that the variation of resolution with off-axis position is far less severe than predicted by the calculations of

the RIMS blur circle radius. In fact out to 12 arc minutes no fall off in resolution is observed for the rocket

mirror while the ray tracings indicate that the RMS radius has increased from essentially zero to 4 arc seconds

in the best case (Figure 5).

The conclusion that we draw from this result is that the RMS blur circle radius is a poor indicator of

actual mirror performance when applied to angular resolution. Consequently the various figures which can be

found in the literature describing the off-axis performance of mirrors are probably misleading when considered

in the context of solar observations. A more serious consideration is their use in those solar applications

which call for both high resolution and large collecting areas. To increase collecting area, for a fixed focal

length, there are usually three options available, to increase the diameter of the mirror, to use nested sets, or

to increase the length of the mirror element. When the application calls for high resolution over a wide field,

the third option is usually rejected because of the loss in off-axis resolution predicted by the ray tracing pro-

grams. Our observations would suggest that this conclusion may be overly restrictive and we would be inter-

ested to learn of the experience of other groups in this area.

To conclude this section we would like to illustrate the two points that we have raised, namely that there

is little degradation in image quality as one goes off-axis and secondly that most of the observations made to

date have been limited by the film rather than by the optics and its corollary that the current generation of X-ray

optics have in fact met their design goals of one arc second imaging, by using actual data recorded during a

rocket flight. Figure 6 shows the solar X-ray corona on'31 Ianuary 1978 photographed with the fused silica

rocket mirror. The box encloses a feature which has been tentatively identified as a flaring bright point. It is

located a little over 14 arc minutes from sun center at which the optical axis of the telescope was directed.

The two lower frames of Figure 6 are magnified views of the same region taken with different exposures and

recorded on two different emulsions. The left hand frame was recorded on Eastman Kodak SO-212, the Skylab

film. The effect of the grain noise is obvious and the feature is unresolved. However, in the right hand frame,

which was recorded on Eastman Kodak SO-253, a fine grain holographic emulsion, the structure is clearly re-

vealed as a single loop 12 arc seconds long and slightly in excess of 1 arc second wide. The photograph,

which of course includes the effect of the PRF which is neglected in the ray tracing treatment, clearly demon-

strates that even at relatively large angles from the optical axis the angular resolution of the mirror for X-rays

is on the order of one second of arc. Note: Essentially the same conclusion can be drawn f[[}[n the HEAO-2
calibration data which shows that the HWHM is essentially independent of off-axis position"°-'.

The Scientific Rationale for Improved Resolution Imaging

Given the fact that our current observational capability is on the order of one arc second, we must ask

the question: Are there valid scientific objectives that will justify the effort to improve the resolution of X-ray

telescopes by an order magnitude ? Clearly we believe the answer to this question is yes. During the last

decade our knowledge of the solar corona has been vastly increased due, in large part, to observations made

with grazing incidence optics in the soft X-ray region of the spectrum. The classical view of the corona, as

uniform and symmetrical with a radially outward decreasing density which expanded and contracted with the

solar cycle, has been replaced by a picture dominated by plasma filled magnetic loops of all dimensions down

to the limit of resolution (Figure 7). Similarly the description of the physics of the corona, of its energy

balance, of the method if its heating, of the mass exchange between it and the lower levels of the solar atmo-

sphere and of the nature of the instabilities which give rise to solar flares and other transient phenomena, has

evolved into an explanation of these phenomena within the framework of magnetic loops.

This change in perspective has developed in concert with improvements in the spatial resolution of X-ray

telescopes and in particular as a result of the long duration observations obtained from Skylab, However, the

latter were limited in general to a spatial resolution of a few arc seconds, except for certain objects which

have very high contrast. Nor, because of the high level of scattering produced by the mirror surfaces, were

the Skylab X-ray instruments well suited for distinguishing between subtle changes in intensity from adjacent

image elements. For many of the more fundamental problems outlined above, this has proved to be a particu-

larly severe limitation to the Skylab data.

Observationally the requirement is not simply to resolve loops, or other structures, of smaller and smaller

size, but rather to resolve the internal structure of individual loops which are themselves of moderate dimen-

sions. For instance typical active region loops have widths on the order of 5 -30 arc seconds and lengths of

1 -4 arc minutes. The Skylab telescopes, with their realistic resolution of something in excess of 3 arc sec-

onds, had sufficient resolution to resolve these loops but were unable to unravel the characteristic structure

of individual loops. In particular it has not proved possible to specify the radial variations of the plasma

properties of loops. This question is crucial because the high transport coefficients along the direction of the

magnetic field (i. e., along the loop) tend to smooth out longitudinal pressure and temperature variations. In

contrast the magnetic field inhibits the transport properties perpendicular to the field and gradients can be
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(a)

(b) _ (c)

30 arc sec.

Fig. 6. The X-ray corona on 31 January 1978 showing

the location of a flaring bright point (a). Magnification

of the feature seen in different exposures shows the

improvement in resolution between Eastman Kodak SO-

212, the Skylab film (b) and the fine grain SO-253 (c).

In the latter a single loop with a width slightly in ex-

cess of I arc sec and 12 arc sac long is clearly

revealed.

Fig. 7. The X-ray corona on 8 March 1973 showing

the predominance of loop-like structures throughout

the corona. The magnified image shows the loops

associated with one of the active regions. The loops

are several arc minutes long and 15-25 arc sac wide.

They are too narrow to have their radial structure

clearly resolved at the 2 -3 arc sac resolution level

of this image.

established in this direction. Consequently the different models of loop heating can be characterized by their

description of the variations that can be expected across the loop. For instance, does loop heating take place

only in a thin surface layer which surrounds a cool core or are loops bundles of individual flux strands each

with its own temperature and pressure regime? It is difficult to see how a rationale choice can be made be-

tween the various theoretical models without observations with much higher spatial resolution than is currently

available.

A second fundamental and largely unexplored area deals with the stability of loops. Here the important

question is why many loops remain relatively quiescent while others undergo large transient brightenings and

flaring. Recent theoretical work indicates that the initial instabilities in loops are almost certainly the tong

wavelength macroscopic instabilities. The pressure, or temperature, perturbations corresponding to these in-

stabilities will show up as brightness fluctuations at or below the arc second level.

An estimate of the time resolution required for the study of transient or flaring phenomena can be

obtained from the time taken for a plasma disturbance moving at the coronal sound speed (2-3x 102 km s -1) to

cross one arc second, that is the distance over which independent determinations of the plasma characteristics

can be made. Since this distance corresponds to-700 km at the center of the solar disk then a time rr, solution

of 1 s or less is necessary. Further, since the small loops frequently found at the centers of flarinq regions

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH
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have lengths on the order of i0 arc seconds, it is obvious that a combination of both high spatial and temporal

resolution is essential _the propagation of disturbances through this type of structure is to be studied. A re-

cent review by Wentzel"°-' provides a more detailed discussion of the current problems of coronal physics with

particular emphasis on coronal loops.

The Next Generation of X-Ray Imaging Instruments for Solar Observations

The observational goals that would justify the development of a new generation instrument are:

(i) A real spatial resolution of less than half an arc second. In light of the earlier discussion, this

resolution is the resultant of folding together the MTFs of both the optics and the detector; and

(ii) A temporal resolution on the order of one second.

The first stage in achieving this goal would be the fabrication of a very high quality grazing incidence mirror

and such a program forms the basis of our proposal for AXIO -An Advanced X-Ray Imaging Observatory.

An Advanced X-Ray Imaging Observatory

Our concept of AXIO is based on a single Walter Type I grazing incidence mirror with Walter Schwarzchild

reflecting surfaces. We believe that only minor advances in current technology are required to permit the fabri-

cation of the reflecting surfaces with sufficient accuracy to provide a resolving power of better than 0.2 arc

seconds. The instrument concept provides for a group of four interchangeable focal plane detectors whichwould

be selected for specific scientific objectives. An initial configuration, designed specifically for imaging ob-

servations would consist of pairs of 70 mm photographic cameras for ultra-hlgh spatial resolution and electronic

cameras for high time resolution observations. Many other configurations are possible and would undoubtedly

be implemented in the expected 20-year operational life of the mirror and one rather exciting example is dis-

cussed later.

AXIO is projected as a candidate for flight on the Space Shuttle where it would be mounted to the instru-

ment pointing system (IPS). Consequently it has been sized to be contained within a cylindrical volume roughly

7 m long and 1 m in diameter and weighing approximately 1000 kg. This size was chosen specifically to allow

AXIO to be flown as part of a solar instrument cluster. For although AXIO is designed to operate alone the range

of problems which it is proposed to study would benefit from the simultaneous acquisition of data by other solar

instruments, many of which are already planned for flight.

An indication of the improvements in observational capability that AXIO will provide can be found by refer-

ence to Table I. In this table the various instrument parameters are compared with those of the Skylab telescope

and in general reflect an order of magnitude improvement.

We have chosen a single mirror for AXIO rather than a nested set for three main reasons:

(i) In a nested set the final imaging properties tend to be governed by the worst mirror in the set

rather than by the best.

(ii) The mechanics of nesting large mirror assemblies inevitably leads to some degradation in image

quality arising from distortions introduced in the mounting plane, slight differences in focal lengths,

etc., and these degradations are likely to be relatively more severe for large, ultra-high resolution

mirror s.

(ill) For solar observations the requirement for very large collecting areas is not quite as overriding as

it is for celestial astronomy.

Obviously a single mirror design of rather modest dimensions, as AXIO is, will also be less expensive to

fabricate than, for instance, the larger and more mechanically complex nested assembly proposed for the Ad-

vanced X-Ray Astrophysical Facility (AXAF). However, even if cost were not a consideration, for those aPpli-

cations where ultra-high resolution is of paramount importance we believe that the single mirror approach is the

best solution.

The AXIO Mirror Fabrication Tolerances

The goat of sub-arc-second resolution for the AXIO mirrors can be met with carefully figured and very

smooth reflecting surfaces. The tolerances on the surface figure are generally tighter than thos ,_ specified for
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TABLE I INSTRUMENT PARAMETERS

A Comparison Between AXIO and Skylab

AXlO
Wavelength Range 6 - 300 R 2 - 60 )_

Spectral Resolution Broadband l0 ranges Broadband 6 ranges

Field of View 40 x 40 (arc rain) 2 48 x 48 (arc rain) 2

X-Ray Mirrors

Figure Wolter Schwar zschild Par aboloid-Hy per boloid

Material Fused Silica Nickel Coated Beryllium

Diameter 80 cm 30 cm and 23 cm nested pair

Effective Collecting Area 175 cm 2 20 cm 2

Focal Length 475 cm 213 cm

Plate Scale 23 microns (arc sac) -I J0 microns (arc sac) -1

Solar Image Size 4.4 cm 2.0 cm

Resolving Power (X-ray) 0.2 arc sec 2 arc sec

Diffraction Limit 5600 A 0.1 arc sac 0.4 arc sec

20 ,_ o, x 10 "4 arc sec 2 x 10 -3 arc sec

Point Response Function (FWHM) 0.5 arc sec 3.4 arc sec

Focal Plane Detectors

Film

Type (Eastman Kodak) J41_ SO-212

Spatial Frequency 20% MTF 9 cycles (arc sec)-1 1 cycle (arc sec)-1

Exposure Times 1/4, 1, _, 16, 60, 256 sec 1/64, 1/16, 1/4, l, 4, 16, 64, 256 sec

Time Resolution 0.5 sec 6.5 sec

Photoelectric

Types

Pixel Center to Center Spacing

Wavelength Range

Spectral Resolution

Time Resolution

for _ x 4 arc rain field

for 40 x _0 arc min field

Microchannel Plate & CCD

15 microns (0.65 arc sac)

6 - 30O

Broadband 4 ranges

1 sac (for data rate of i M bits s-j)

15 sec (for data rate of 1M bits s-l)

the HEAO-2 mirrors by approximately a factor of 2. Not surprisingly they are very similar to the tolerances

proposed for the AXAF mirrors (5). However the latter are physically larger and consist of a nested set of mirrors

and consequently in assessing the ultimate resolution of the AXAF mirrors the tolerances which describe the

achievement of confocaltty between the individual mirrors of the set have to be included.

In general the fabrication methods that were used for the HEAO mirrors will be adequate to achieve the

specifications required for AX[O. However, the in-process metrology must be improved since the current

limitations in our ability to figure very accurate surfaces, is not in actually figuring the surface but rather in

knowing when the required figure has been achieved. In this respect we believe that a laser scanning technique

developed for the fabrication of a high resolution X-ray microscope could be adapted successfully to the metro-

logy of the AXIO mirrors. The technique is capable of measuring displacements of less than one microinch or

slopes of less than one mtcrotnch per inch in real time and without the removal of the piece under fabrication

from its production fixture. The tolo[ances on the microscope figure were in general tighter than required by

AX[O and its successful fabrication (7) demonstrates the soundness of the basic concepts and gives us confi-

dence that the tolerances for the larger AXIO mirror can be achieved.

The tolerances on the mirror surfaces required to achieve AXIO's stated goal are shown in Table 1l where

they are compared wlth the specifications for the HEAO-2 mirrors. Definitions of these tolerances can be found

in the description of AXAF presented by Zombeck (5) at this conference. It is more instructive to compare the

AXIO requirements with the tolerances actually achieved on HEAO-2. From this comparison it can be seen that
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TABLE II MIRROR TOLERANCES*

A Comparison Between AXIO and HEAO-2

HEAO-2

Specification Achieved Specification

200 x 10 -6 40 x 10 -6 ]00 x 10 -6

2. zX(Z_R)

AXIO

3. DR

ZI° R (_) per inch of

Circumference

Design Goal

50 x 10-6 #3 x 10 -6 20x I0 -6 8 x 10 -6

250 x 10-6 250 x 10 -6 --

+25 x l0 -6 5 x 10 -6 +10 x 10 -6 +5 x 10 -6

5. Sap.ittal Depth +5 x 10 -6 _+3 x 10 -6 _+3 x l0 -6

6, _ Slope per Axial LenRth _+3 x 10-6 -+4 x 10 -6 +3 x I0 -6 £0,5 x I0 -6

el One Inch

7. Surface Finish RMS 30 _ 14-25 _ 20 _ ]0

Roughness

* All specifications are in inches unless otherwise stated.

the major problem area is the axial slope error (A slope per axial length). However it is precisely this tolerance

that the laser scanning method was developed to measure. Since with its use we have demonstrated a capabil-

ity to figure and measure surface slopes to better than one microinch per inch we feel confident that the AXIO

design tolerance can be met,

Finally the surface smoothness actually achieved for several of the HEAO mirrors is better than the re-

quired specification for AXIO and very close to the design goal. The HEAO mirrors were finished using the

submerged polish technique and, provided that sufficient time is available for final polishing, this technique

appears to be adequate to achieve our goals.

In concluding this section we would like to reiterate the point that the achievement of the fine tolerances

required by AXIO lies not so much in improvement of the fabrication techniques themselves, but rather in the

in-process metrology which must be capable of monitoring the progress in near real time.

Expecte_ Performance

To visualize the improvement in the observations that we expect to obtain with the AXIO system, we have

compared several indicators of its predicted performance with the known performance of the Skylab telescope.

The two characteristics that we wlll compare here are the PRF, which is the ultimate indicator of resolution and

the ERF or edge response function which demonstrates how well the system, i.e., the optics and the detector

can reproduce an infinitely sharp brightness edge.

The central maximum of the AXIO PRF has been calculated on the basis of the tolerances placed on the

surface figure while the wings are based on the achieved scattering function of the HEAO mirrors. The Skylab

PRF is actual experimental data and the two curves are shown in Figure 8. Compared to Skylab, the AXIO PRF

is very sharply peaked within a few arc seconds of the central maximum. It has a HWHM of ~ 0.25 arc seconds

and a half power radius of ~ 3 arc seconds. The latter figure is quite conservative since it can be obtained

without any improvement in surface finish over that which has already been achieved with the HEAO mirrors.
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Fig. 8. A comparison of the calculated PRF for AXIO

with the measured PRF of Skylab.

However, even if no further technological advances

in fabrication are made and the calculated AXIO PRF

is realistic, the ability to resolve the fine details of

solar structure will be greatly improved compared to

Skylab whose PRF within 2-3 arc seconds of the

central maximum is nearly flat.

In order to obtain the maximum performance from

AXIO the resolution of the mirrors and the detection

system must be carefully matched. For the highest

resolution observations, we plan to use a fine grain

emulsion film as the prime detector. Unfortunately,

there is a penalty for the use of these emulsions,

namely their poor sensitivity. For instance we have

found that it requires fifty times more deposited

energy to obtain a net photographic density of I. 0 for

SO-253 than for SO-212, the two emulsions compared

in Figure 6. Therefore before we can calculate the

ERF we have to make certain that the choice of emul-

sion will not limit the observations by making the

exposure times too long. To check this, we have de-

fined a criterion based on our Skylab experience. For

instance we wish to record bright features, e.g.,

flares and active region cores, with exposure times

not exceeding 4 s while we are prepared to make

synoptic observations of large scale structures,

coronal holes, etc., with exposures up to but not

exceeding 256 s. Now the effective speed (f-number)

of an X-ray mirror can be defined as the ratio of the effective collecting area to the focal length squared and

using the values in Table I, AXIO shows an improvement in speed of a factor of 2 over Sky|ab. This is insuf-

ficient to compensate for the difference in film speed; however, because of the increase in focal length, and

hence image size, it is not necessary to use SO-253 to achieve the 0.2 arc second resolution design goal. A

review of available Eastman Kodak emulsions suggests that 34 14, a high definition aerial film with an inter-

mediate grain size, is a good compromise.

Experimentally 3414 is a factor of 10 slower than SO-212 which would still leave AXIO with only 1/5 the

speed of the Skylab telescope. However we have not compensated for the effect of AXtO's greatly improved

PRF. The narrowing of the PRF means that more of the reflected energy will fall on the central image location,

thus increasing the speed, at least for small scale features. By modelling various size features we have

estimated the magnitude of this effect based on the measured results from Skylab. For cylindrical features

with a source radius of 1.5 arc seconds the increase is a factor of 12, which falls to 6 for a 4 arc second

radius and levels off around a factor of 3 for features larger than 10 arc seconds in radius. Taking all factors

into account the speed of the AXIO mirrors together with 34 14 film should be roughly equal to Skylab for large

scale features and over twice as fast for the smallest features.

Having decided on the emulsion that will be used for AXIO we can now evaluate the ERFs for both AXIO

and Skylab. They are calculated by integrating the PRF to form the line spread function of the mirror. This is

then convolved with the line spread function of the film and the resultant is integrated to form the ERF. The

results are shown in Figure 9 and the superiority of AXIO over Skylab at both high and low frequencies is ob-

vious. To quantify the smoothing introduced by the system we find that a +_ 10 percent change in the ERF at the

center of the edge occurs over a spatial separation of 0. 16 arc seconds for AXIO and 2.0 arc seconds for Skylab

while a +_50 percent change in the ERF reflects spatial separations of 0.82 and 14 arc seconds, respectively.

Consequently, we believe that the AXIO system as presently configured will be capable of meeting the design

resolution goal of 0.2 arc second.

The Use of Grazing Incidence Relay Optics

The previous discussion has been directed towards ultra-high spatial resolution observations using film

placed at the primary focus of the grazing incidence objective mirror. However, an equally important scientific

objective outlined earlier was for high time resolution observations and these almost certainly imply electronic

imaging. The likely candidates for focal plane detectors, ,.q., CCDs or microchann_l plates, r_ave resolution

elements with center to center spacings of no ]_ss than ]5 microns. Since the plate scale [or AXIO _ 23

microns/arc socond, theso devices will soveroly limit [h_ spatial re:;olution of the ob.<_rvation_ A_ an
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Fig. 9. A comparison of the ERFs for the Skylab and

AXIO systems.

alternative to increasing the plate scale by increasing

the focal length, we believe that the level of tech-

nology is sufficiently advanced to consider the de-

velopment of relay optics to magnify the primary

image.

In particular a grazi_ incidence microscope of
the type described by Silk _' ' could, with suitable

modification, be used to image the primary focus of

the AXIO mirrors to form a grazing incidence astro-

nomical telescope, an arrangement shown in Figure

10. The secondary grazing incidence mirror has

hyperboloid-ellipsoid reflecting surfaces with the

forward surface designed to collect the cone of rays

leaving the primary focus of the objective, Since the

microscope has achieved a spatial resolution of ~ l

micron in the object plane, it will not deteriorate the

resolution of the secondary image, for the design goal

of 0.2 arc seconds corresponds to 5 microns at the

primary focus. The factor of 10 magnification will

expand the plate scale in the secondary image to 230

microns/arc second and consequently the 15 micron

center to center spacing of the COD resolution ele-

ments would not be a limiting factor.

The price paid for the increased magnification

is a restriction of the field of view. However, if the

instrument is baselined with an 800 x 800 CCD,

which corresponds to a (52 x 52) arc second 2 field of

view, the transmission of this field every second

would require a data rate in excess of 5M bit s-l for

8 bits of intensity information per resolution element.

GRAZING INCIDENCE

TELESCOPE

CONVERGING ANGLE,_ 10"

GRAZING INCIDENCE

MICROSCOPE x 10

MAGNIFICATION

PRIME FOCUS // SECONDARY FOCUS
#/

PLATE SCALE /" PLATE SCALE
/

23 microns / 230 microns

(arc sac) -1 / (arc sec) -1

CONVERGING ANGLE "1 °

_' 4.75m _ I_. 1.1m _,._ t

Fig. I0. A grazing incidence astronomical telescope employing two separate grazing incidence optical

elements.

Therefore in the near future, the very high information content of the images is likely to restrict the area

sampled to (20 x 20) arc second 2 which, based on our experience, is compatible with the field of view of the

X-ray microscope.

Other advantages of the use of relay optics are that:

(i) It provides the increase in magnification with only a modest increase in the total length of the in-

strument compared with the alternative of increasing the focal length of the objective; a difference
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between 6 and 47.5 m in the example described above.

(ii) Since the primary focus is not obstructed film cameras could be inserted there without disturbing

the location of the secondary optic which is rather critical because of its small depth of focus.

(iii) The addition of the relay optics also decreases the divergence of the X-ray beam which has a major

impact when the grazing incidence mirror is used as e flux collector for a grating spectrograph. In

the design shown in Figure 10 the convergence of the beam has been reduced from i0 ° after the

primary to 1 ° after the secondary mirror with the result that the secondary beam is much more at-

tractive for illuminating gratings. For now the grazing angles of the secondary beam, with respect

to the grating, are below the critical angle and the reflection coefficients for the X-ray lines have

reasonable values.

Although these designs are still in their infancy we believe that the progress already made indicates their

feasibility and their realization will be e great assist in the quest for ultra-high resolution.

C onclu s ion

In summary, the notable success of the HEAO-2/Einstein mission has demonstrated that the technology

for fabricating ultra-high resolution mirrors exists. The scientific uses of such an instrument are clearly

defined and extremely important to the understanding of the physics of the solar corona. When coupled with

the imminent availability of the Space Shuttle Transportation System to carry large instruments into orbit, the

time seems opportune for the development of a large ultra-hlgh resolution grazing incidence mirror to serve

the needs of the solar physics community.

Finally by illustrating (Figure 11) how our view of the corona has changed as the resolution of X-ray tele-

scopes has improved, from 20-30 arc seconds in the early sixties to 2-3 arc seconds during the Skylab

mission in 1973, we hope to convey the feeling of excitement that we have about this project. At the poorer

resolution the areas of bright emission were isolated and found to be located above active regions. With a

factor of lO improvement in resolution, the bright emitting regions are resolved into individual loops, the

basic building blocks of the corona. The improved resolution and sensitivity also reveals the presence of

X-ray bright points and coronal holes. We expect that a further factor of l0 improvement will reveal the in-

ternal structure of the loops, will enable propagating wavefronts arising from energy released in localized

instabilities to be tracked and perhaps allow us to observe the reconnection of magnetic field lines.

Fig. It, Images demonstrating the effect of improving resolution on our knowledge of the structure of the

corona. (a) A rocket photograph from May 1966 and (b) a Skylab image from June 1973.
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Question i:

Answer i:

Question 2:

Answer 2:

Questions from the Floor

What is the projected curvature of field for AXIO?

The AXIO mirror design employs Wolter Schwarzschild surfaces and the expression

for the curvature of field for such a mirror can be found in Reference 3. Sub-

stituting the parameters for AXIO, the deviation from a flat surface is 60

microns at 5 arc min and 480 microns at 15 arc min from the optical axis. If

AXIO is coupled with a grazing incidence microscope to form a two element sys-

tem, the curvature of field of the primary focus would not be the limiting

factor. The primary focal plane would be within the depth of field of the

microscope over an angle of _2-i/2 arc min, which is very large compared to the

useful field at the secondary focus which is of order 1/2 arc min.

At 0.1 arc seconds, might you not require more light (x-rays) to make exposures

rapidly (% 1 sec) to prevent smearing of the image by actual motions on the

Sun's surface?

It is quite true that there is little advantage to be gained by improving the

spatial resolution for dynamic events if the temporal resolution is limited to

a time which is long compared to the characteristic time, defined by the quo-

tient of the resolution element and the velocity of the process to be observed.

However, AXIO is designed to observe both static and dynamic events and the

highest resolution observations will be associated with the former. The dy-

namic events will require electronic imaging and here the resolution will be -i

limited to %0.5 arc sec, at least initially. For a sound speed of 200 km sec

the characteristic time for 0.5 arc sec resolution at the center of the solar

disk is _2 sec, i.e., longer than the temporal resolution and therefore the

image will not be smeared. As the observations are improved, we will undoubt-

edly run into limits imposed by the photon statistics. However, there is one

saving grace, namely that at least one class of dynamic events, solar flares,

have very high emissions and will allow an increase in temporal resolution of

at least an order of magnitude above the one second level.
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Abstract. A real-time imaging system for displaying the solar coronal soft X-ray emission, focused by a

grazing incidence telescope, is described. The design parameters of the system, which is to be used pri-

marily as part of a real-time control system for a sounding rocket experiment, are identified. Their achieve-

ment with a system consisting of a microchannel plate, for the conversion of X-rays into visible light.

and a stow-scan vidicon, for recording and transmission of the integrated images, is described in detail.

The system has a quantum efficiency better than 8",, above 8 A. a dynamic range of 1000 coupled with a

sensitivity to single photoelectrons, and provides a spatial resolution of 15 arc seconds over a field of view

of 40 × 40 square arc minutes, The incident radiation is filtered to eliminate wavelengths longer than

100 A. Each image contains 3.93 × 10 _ bits of information and is transmitted to the ground where it is

processed by a mini-computer and displayed in real time on a standard TV monitor.

1. Introduction

During the past decade high spatial resolution X-ray images of the Sun's corona

have been obtained using grazing incidence optics and photographic film [1-4].

Although there have been major advances in the recording techniques and in the

analysis of the images [5], the use of film as the detector has so far limited their

application to sounding rockets and manned spacecraft, where recovery of the

film is possible. However, photoelectric detection of the X-rays and subsequent

electronic imaging would allow the techniques to be extended to non-manned

satellites and would in addition permit real-time control of the experiment either

from the ground or in the case of the Space Shuttle from the Payload Specialist

Station. The imaging capability would also enable non-imaging X-ray diagnostic

instrumentation with narrow fields of view to be directed at targets on the solar

disk selected on the basis of their X-ray rather than their visible light (e.g., H_)

signature. In this way several classes of coronal phenomena, for example X-ray

bright points, coronal arches or coronal hole boundaries, which in general cannot

be observed at longer wavelengths, can be studied directly. Primarily to meet this

objective but also to provide experience for eventually replacing film entirely, an

electronic X-ray imaging system has been developed for flight on a sounding rocket

as part of a target acquisition system for a narrow field, plane crystal, X-ray spec-

trometer. Since electronic cameras cannot yet provide the same spatial resolution

as film, the rocket instrument also included a photographic camera to record data

for post flight analysis. Since there is only a single X-ray mirror, the experiment

Space Science Instrumentation 5 (1979) 51 71. 0377 7936, 79/0051 0051 $03.15.
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was designed so that the two cameras could be interchanged in the focal plane either

automatically or as a result of a ground command.

The scientific objectives of the experiment and the characteristics of the X-ray

emission from the Sun establish the specifications of the electronic imaging system.

They are:

i l) A spatial resolution of better than 15 arc sec which corresponds to 9 line

pairs per millimeter at the focal plane detector.

(2) A dynamic range in excess of 100 coupled with the capability of detecting

single photons and of withstanding 5 orders of magnitude above this minimum level

without permanent damage.

(3) A capacity to integrate signals for periods up to tens of seconds.

(4) Stable photometric accuracy under varying environmental exposure conditions

and freedom from geometrical distortions.

To meet these requirements we have developed a system which uses a micro-

channel plate (racP) to convert the X-rays into visible light and a slow scan vidicon

for signal recording and readout. The two units are coupled together using coherent

fiber optics. This solution was chosen over relay optics to simplify the design of

the interchangeable focal plane assembly.

To match the image size formed on the front plate of the moP to the scanned area

on the vidicon faceplate, the mcr, phosphor is deposited directly onto the surface

of a reducing fiber optic which reduces the image size by a factor of 1.5 (linear di-

mension). The demagnified image is transmitted to the fiber optic faceplate of the

vidicon through a flexible coherent fiber bundle, or imagescope. The fibers in the

optic and the vidicon are grouped in hexagonal arrays, whereas those in the image-

scope form square arrays to minimize the Molt6 patterns arising at the interfaces.

For the same reason the individual fiber diameters change from 6 microns in the

optic to 10 microns in the imagescope and back to 6 microns in the vidicon faceplate.

The detailed instrument description which follows is divided into sections devoted

to the X-ray detector, the video camera, various circuit details and system per-
formance.

2. The X-ray Detector

The solar X-ray corona viewed from the Earth subtends an angle of approximately

40 arc min. The image of this field produced by the rocket grazing incidence tele-

scope has a diameter of 17 mm. Of the photoelectric detectors currently available,

only the microchannet plate (ucP) combines high spatial resolution with a suffi-

ciently large sensitive area to detect this image.

mcl,s consist of close-packed arrays of geometrically uniform, semiconducting

glass channels. The channel diameters may be chosen from within the range 8 50

microns, depending upon the application, and typically the channel diameter is

80°0 of the center-to-center spacing. When X-rays strike the inner surface of one
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of the channels they are either reflected or absorbed. Since the work function of

the glass is a few electron volts, the absorbed X-rays release one or more electrons.

The application of an electric field between the ends of the plate accelerates the
electrons and an electron avalanche forms as a result of further collisions with the

channel walls. Upon exiting from the channels the electrons are proximity-focussed

onto a phosphor screen. The overall gain of the system is limited to 104 by a process

called ion feedback which arises because of the linear geometry of the channels.

The effective gain can be increased by mounting plates in tandem in such a way

that the channels of one plate are set at a small angle, or geometrical bias, to the

plane of the MCP. This eliminates the straight path through the combined plate

and the ions, because of their mass, are trapped at the junction of the plates 1-6].

This configuration which is called a chevron plate allows gains in excess of 107

to be obtained and chevron plates, manufactured by Galileo Electro-Optics [7],

were used in the present instrument. For the flight unit we chose a chevron plate
with a circular sensitive area of 25-mm diameter with 25-micron-diameter channels

arrayed on 3 l-micron centers. This geometry provided a suitable match to the image

size and resolution requirements; however, the more advanced projects that we

have planned will need both smaller channels and larger sensitive areas.

The quantum efficiency of the MCP is a function of the angle at which the incident

X-rays strike the channels [8], which in turn is set by thej:number of the imaging

system. Because of the finite size of the solar image and the fact that grazing in-

cidence optics produce an annular bundle of rays, the striking angle varies between
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5.5 and 6 degrees in the present instrument. As the quantum efficiency peaks close

to this angle the channels of the first plate are aligned parallel to the optical axis

of the imaging system and the second plate set at a bias of 15 {Figure 11, i.e. the reverse

of the normal arrangement. This geometry provides approximately uniform quantum

etIiciency across the image. Actual measurements were performed at 8.3 and 43.4 A

and are shown in Figure 2 where the solid line represents the theoretical efficiency

calculated using the model of Bjorkholm et aL [8] and normalized to the experi-

mental data at 8.3 A. The required passband of the detector is from 7 to 60 A and

the data show that the quantum efficiency increases monotonically from 7". to 25"<,

across this range.

2+1. MOUNTING ASSEMBLY

Since the m('P can only be operated below 2 x 10 _ torr and must be conditioned

for several hours at or below this pressure before the voltage is applied, it was en-

closed in a stainless steel vacuum chamber (Figure 3). Copper gaskets were used

throughout and the chamber was continuously pumped using a 2 1 s-_ titanium

cathode ion-pump [9]. To save weight the standard iron magnet was replaced by

a magnet made from cerium cobalt [10] which has provided excellent performance

at less than one fifth of the total weight. Typical operating pressures of 5 x 10 +

tort have been obtained.

The front port of the vacuum chamber contains a quartz window which allows

the m(+P to be operated in the payload during ground testing. The front port releases

and swings forward when the rac+Pis driven into the focal plane. This action exposes

a thin aluminized organic X-ray filter which now forms the forward vacuum scal.

To minimize the pressure differential across the filter this event is timed to occur

above an altitude of 120 km.

We have chosen not to operate the pump during flight to avoid the possibility
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Fig. 3. A photograph of the _('v mounted in its stainless steel vacuum chamber _'ith the front co,,'er

remosed The im_lgescope is also shown

of ion contamination of the Mop; this was never a major problem on the ground

although its operation could be detected at the highest gain settings as a slight in-

crease in the noise. However, the ion-pump is also used as a diagnostic aid to measure

the chamber pressure and for this function its in-flight operation can be controlled

from the ground.

2.2. X-RAY AND EUV FILTERING

The solar EUV and uv radiations, to which the plate is sensitive, are prevented from

reaching it by a composite filter of 3000 A of aluminum and 5 microns of poly-

propylene (C_H6). The most critical wavelength region for the filter lies just beyond

the aluminum L-edge between 170 and 250 A. The transmission of the filter can be

calculated using the mass absorption coefficients of Caruso [!1] and Henke and

Elgin [ 122. It was found that increasing the thickness of polypropylene will reduce
the transmission in the 170-250 A waveband faster than the transmission at the

shorter X-ray wavelengths. The actual thickness of the filter was chosen so that it

would reduce the number of photons in the incident spectrum in the longer waveband

to less than .5_;; of the number between 7 60/_.

The filter is made in a sandwich: the first layer consists of 2.5 microns of poly-

propylene with 1500 A of aluminum on either side and is followed by a separate

film containing the balance of the polypropylene. The use of two layers of aluminum

has been found to produce a much higher yield of pinhole-free filters and the sand-

wich construction isolates the second aluminum layer from the Mo, and prevents

uv-produced photoelectrons from producing noise counts.
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2.3. THE MCP GAIN

Although the MCP can be operated at gains up to l0 T there is a distinct advantage

to operating at lower gains as this will reduce the noise contribution from spurious

events. The required gain can be estimated from a knowledge of the sensitivity of

the vidicon and the requirement that the system be able to detect single photo-
electrons.

Typical slow scan vidicons are sensitive to a faceplate illumination of 0.01 foot-

candles per second which corresponds to approximately 0.17 erg s -_ cm 2. If

the sensitive area ( _ I cm 2) is divided into a 256 × 256 pixel matrix (see Section 3.1 ),

the energy required per pixel is on the order of 3 × 10 6 erg s-_. The maximum

spectral response of the vidicon and the peak output of the MoP phosphor were

matched at 4200 ,_,. Using this wavelength the number of photons required to produce

a useable signal is 6.3 x 105. Under normal operation the phosphor provides a

gain of 100: consequently to detect single X-ray photons the swP need only provide

a gain of 104. On the basis of the manufacturer's gain characteristics this requires
operating the plate under a potential difference of 1350 volts. This is well below the

maximum recommended operating voltage (2200 V1 and ensures that the operation

of the plate is essentially noise free.

Because of the wide range in intrinsic brightness of the X-ray corona (103 104),

the imaging system was provided with three time exposures by electronically shut-

tering the M('r'.The three exposures were nominally 1/4, 1 and 4 s and were obtained

by gating the plate voltage. Thus each exposure duration is defined by the time the

high voltage is maintained across the plate allowing electron multiplication to take

place. When the exposure is over, the gating pulse is turned off and the plate is

returned to a lower voltage where multiplication does not occur. The rise and fall

time of the power supply was approximately 20 ms which is adequate for defining

even the shortest exposure.

The three time exposures coupled with the intrinsic dynamic range of the vidicon

1_ 1001 provide a total dynamic range of 1.6 × l03. This value is marginal for de-

tecting the range of phenomena on the sun and leaves little room for error in selecting

the flight settings. The first alternative of adding further exposures, e.g. 16, 64 s, etc..

was rejected as their addition to the sequence would take up too great a fraction of

the observing time (approximately 100 s of the flight was all that could be allotted

to the operation of the X-ray video system). An alternative approach is to vary the

gain of the MoP by controlling the voltage applied across it. For instance if the gain

is increased by a factor of 64 then the signal recorded by the vidicon during the

shortest exposure will now be equivalent to four times the signal recorded during

the longest exposure at the low gain setting, for a source of constant illumination.

Thus the combination of the three exposure sequences and the two gains will provide

a total system dynamic range in excess of 105. This increase in gain can be achieved

with a potential difference across the plates of 20(0 V, which is still well below the

maximum operating voltage. The instrument is launched in the low gain config-
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uration and if the picture displayed on the ground monitor is too faint, the gain of

the MCP can be increased by activating a relay closure, by way of a radio link, to

select a second biassing resistance on the low voltage side of the MO' high voltage

power supply.

3. The Video Camera

3.1. DESIGN CONSIDERATIONS

The video camera is designed to meet the scientific requirements of the experiment

within the constraints set by the capabilities of the telemetry and ground data hand-

ling and display systems. To recapitulate, it must possess a dynamic range of at

least 100, a spatial resolution corresponding to 15 arc seconds and a capacity to

integrate signals for a few tens of seconds. To interpret the spatial resolution re-

quirement consider a square field of view of 40 × 40 square arc minutes which

satisfactorily contains the solar image. For such a field a picture format of 256 x 256

pixels provides 10 arc second resolution elements. The incident flux within each

pixel is represented by one of 64 intensity levels (6 bitsl which our experience, gained

with the computer display of digitized photographic images, has shown to provide

an adequate visual representation of the corona and also suitably matches the

dynamic range &the imaging system.

As it is necessary to integrate the X-ray signal for several seconds to obtain suffi-

cient intensity the vidicon tube must combine image storage and high resolution

during operation at room temperature. Although secondary electron conduction

(SEC) vidicons have excellent storage capabilities, their spatial resolution and dynamic

range are severely limited. The best available tubes at the time (1975) had a resolution,

at the center of the frame, of only 250 TV lines with a 50,'_.,, modulation transfer

function (MTF). Comparable figures for slow scan vidicons are in excess of 800 TV

lines and under slow scan operation, vidicons have been developed which retain

over 90"',i of their signal for periods in excess of 20 s. They operate at room tem-

perature, have dynamic ranges over twice as wide as SEC vidicons and are much less

susceptible to burn out, being able to withstand signals in excess of 103 times the

minimum without suffering damage. Both types of tube have similar photometric

accuracy and are capable of providing an absolute accuracy of approximately 10"o

which is adequate for the present application. Therefore, because resolution and

dynamic range were of primary importance, a slow scan vidicon was selected as

the basis of the camera design.

A pulse coded modulation (PCM) transmitter is used to relay the video pictures

and additional scientific data to the ground. Each telemetry data frame is divided

into 32 twelve-bit words and the repetition frequency is 1024 frames s _. Ten words

of the 32-word frame are used to transmit the video data. Of these ten, 8 contain pixel

intensity coded into 6 bits, or 64 grey levers; the remaining two bits of each intensity

word are used for housekeeping or other low bit rate data. The sixth word identifies

the vertical and horizontal locations, within the image array, of the first intensity
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word of the group of 8 and the tenth word indicates the presence of TV data. This

last word is used to alert the computer, which displays the data, that a time exposure

has been completed and that a readout cycle is underway. Each picture is composed

of 216 pixels and takes 8 s to be transmitted; therefore, the greatest storage time for

an image will be 12 s, i.e., the sum of the longest exposure plus the transmission time,

and signal losses from the vidicon target will be minimal. The TV information is

presented to the transmitter in parallel form through a cable of 8 wires, one for

each bit of the data word. All the bits are clocked together and synchronized with

the telemetry system so that after each word is sampled a new complete word is

shifted into the transmitter buffer.

We have used a camera readout technique which we call "dot scanning.' In contrast

to the continuous sweeps used in standard cameras, each pixel in the 256 x 256

square format is read by turning the electron beam on and offat each location. While

the beam is off, the magnetic deflection fields are changed to select the next pixel

location (see Figure 4 for a timing diagram of the read cycle). After a picture is

read out, the charge pattern left on the target is the whole picture less the partially

filled "dotted holes.' The erasure scan that follows must charge the target uniformly,

thereby reconditioning it for the next exposure. In order to assure complete erasure,

the electron beam makes continuous sweeps during the erase cycle. To minimize

the time between exposures, erasure is limited to a single scan and consequently a

_EL[M[TR¥ CLOCk

_ORIZONTAL COIL DEFLECT]ON SIGNAL

C&THOD[ BL_NK

FILTERED _I'ID[O SIGNAL

PEAK DETECTOR OUTPUT

A/D SAMPLE & HOLD

WITH RAMP

A'Q OSI[]LLATC'R CLOCK

ILEnEErtnEnEnE 
II I

.I_ IIL '_-- BEAM °FF
I J J BEAM ON

11 t i

IJ U U K
IV% fN f
'._/ "--.L/ "---,3 "--,3

DARK CURRE'_T

1 1 -_l'- I I'_- ¢ LATEAU

1 i

_'D REFERENCE

' JII.IL_L .L_ .L
I 122 IIS I

Fig. 4. The read cycle timing diagram.



A RLAI.-IIMI I:[.1( IRONIC IMA(IING S_5IIM 59

small residual image may remain after the completion of thc read-erase cycle. The

residual image is a result of a combination of effects arising from the surPace im-

pedance of the photoconductor, the impedance of the scanning beam and the cap-

acimnce ot" lhe target. Several methods of improving the efficiency o[" the erase scan

were investigated. They included increasing the beam current by increasing the

target potential during the erase cycle and the superposilion of a vertical "dither'

to the horizontal scan with an amplitude equal to the separation of the scan lines.

Although the first method removed the residual traces of the highlights from the

previous exposure, it substantially decreased the dynamic range by' cutting off the

low level signals. The dither system made only marginal improvements to the picture'

therefore, m the interest of simplicity and reliability the changes in the erase scan

were limited to the adoption of a continuous sweep cycle.

Although power consumption is not usually a severe problem on short duration

rocket flights, low power circuits were used whenever possible and cMos was chosen

for the logic family. The total power required by the camera is 12 W which is supplieo

by 3 packs of high rate silver zinc batteries. The packs are mounted within pressurized

battery boxes and are assembled to provide +28 V and ± 18 V. The +28 V supply'

is used for the vidicon heaters and for the tbcussing coil, in each case being inde-

pendently current regulated. The ±18 V packs are voltage regulated to + 15 V

and ± 12 V and are used for the biasing of the vidicon and the control of the logic

circuits.

Finally, past experience has shown that electronic memory devices, such as flip

flops, often reset, without any apparent reason, during typical rocket flights. We

believe the cause to be momentary power interruptions, perhaps resulting from

relay contact bounce, and to prevent this possibility affecting the camera operation,

a diode capacitor network, capable of holding enough charge to maintain the circuit

tbr a few milliseconds, has been built into the system wherever necessary.

3.2. THE VlDWON

To implement the design, several slow scan vidicons manufactured by' General

f!lectrodynalnics [ 13] were tested. The tubes are part of a series of space qualified

designs which have been used successfully on several Mariner missions. The pre-

liminary tests resulted in the selection of a model 7290 vidicon. It has a custonl-fitted

tiber optic thceplate and combines magnetic tbcussing and deflection. The material

of the target is amorphous red selenium. It has a dark resistivity of 10 _3 f_ cm

which permits slow scan operation at room temperature. This particular model is

not ruggedized, but since it was planned to launch the experiment with power off,

it was considered to be mechanically adequate and this decision has been justilied

by flight experience.

The slow scan vidicon can be visualized as a special tetrode tube. Its essential

elements are an electron gun, an electric lield frec region and a target [Figure 5).

The electrons are generated in the gun by thermionic emission from the indirectly

heated cathode. The number of free electrons, or beam current, is regulated by the
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Fig. 5. Schematic diagram of the vidicon tube.

G1 electrode which plays the same role as the control grid in a triode. Leaving GI,

the energy of the electrons is increased to +250 V by the accelerating grid G2. At

this energy the electrons can be deflected without substantial dispersion arising

from their Coulomb repulsion. This grid also acts as an electrostatic lens and focusses

the beam into its first crossover point which occurs within the lens. The slightly

divergent beam exiting from G2 is refocussed by the action of G3 which is set at

+ 320 V. This grid provides a region free of electric fields where the beam can be

magnetically deflected using coils aligned such that their field is normal to the

electron beam. At the far end of G3 is a fine wire mesh placed directly in front of the

target and held at the same potential as G3. The uniform electric field between the

mesh and the target decelerates the electrons so that they strike the target at near-

zero velocity. This "soft landing' prevents the generation of secondary electrons

which are a source of'blooming'. Beam focussing, as in most high-resolution tubes,

is achieved by using a separate coil to produce a uniform magnetic field aligned

parallel to the electron beam. The field causes the electrons to spiral around their

direction of motion and by adjusting its strength a node can be located at the target

where the displacement due to the random perpendicular component of the velocity

of the electrons is zero. Thus the field has the effect of focussing the first beam cross-

over point onto the target.

The control grid voltages are supplied from two separate d.c. to d.c. converters

that operate on + 28 V d.c. power. A custom made MIL power supply [14] provides

the - 70 V for GI and the +250 V for G2. A separate Velonex [15] supply provides

the +320 V for G3. The high audio chopping frequency of the converters was a

significant source of noise and it would have been preferable if they had been syn-

chronized to the basic camera clock frequency of 9.192 kHz or its first harmonic.

ELE;]TR(!N

PAT#I

4. Circuit Details

A functional block diagram of the camera electronics is shown in Figure 6. It con-

sists of three major elements:
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Fig. 6. Functional block diagram of the camera electronics.

(i) The video chain, which takes the signal output from the vidicon and processes

it for transmission. It contains a preamplifier, a two-pole low-pass filter, a d.c. res-

toration circuit, a peak detector and an analog to digital converter.

(ii} The vidicon deflection circuitry which controls the vertical and horizontal

sweeps.

(iii) The control logic which generates all the clock and timing signals in the

camera. The circuitry is of standard design built around binary counters and mono-

stable multivibrators. The CMOSlogic family, operating at + 12 V, is used throughout

the camera because of its low power and high noise immunity characteristics. The

input clock is derived from the ec:_ transmitter and the start of every read cycle is

synchronized with the vcM frame encoding. A special feature of the design ensures

that the exposure cycle always starts at the shortest exposure and cycles through

to the longest exposure. A summary of the various functions is given in Table 1.

4.1. THE VIDEO CHAIN

The video chain takes the signal output from the vidicon and processes it for trans-

mission. It consists of a preamplifier which is a.c. coupled to the tube target, a two-

pole low-pass filter to remove high frequency noise, a d.c. restoration circuit which

provides a base level for the peak detector and finally an analog to digital converter.

The signal pulse from the tube target, resulting from the discharge of a target



62 JOHN M. DAVIS Er AL.

TABLE 1

Logic functions lbr the video camera

Mnemonic Function

ZRZ

PDR

PIB

ZSH

HSH

CBK

ttOR

VER

IIG

ltAl) & VAD

EXS

(.'IN

FIN

Video de. restoration command.

Peak Detector Reset : discharges the peak holding capacitor

Peak Detector Inhibit ; disables the input to the peak detector at the same

time PDR is exercised.

ADC sample and hold command.

Sampling command lbr the horizontal sweep sample and hold converts

the linear ramp into a staircase.

Blanking signal for the tube cathode. It holds the beam off during the

time when the beam is being switched from one pixel to the next and

during exposure and beam retrace times.

Horizontal sweep intcgrator reset.

Vertical sweep integrator reset.

Image intensifier gating: this is the electronic shutter command

8-bit counters that are synchronized with the horizontal and vertical

sweeps. They indicate lhc X and Y addresses of the pixel being read out.

Exposure sequence indicator: shows which one of the three exposures

is being read out.

Input clock derived from the PCM transminer.

Synchronizes the start of every read cycle with the PCM frame encoding.

Its presence simplilies thc frame decoding by the ground computer.

pixel, is due to the induced charge tlow froth that pixel through the target bias and

preamplifier circuitry. To detect this charge flow a current-to-voltage preamplilier

t Figure 7) was chosen because it reproduces the physical target dischargc more

directly and has high speed becausc of its relative independence of source and stray

capacitances. Because the input is a virtual a.c. ground, almost all of the signal

current goes to develop the output voltage. If a truc current-to-voltage conversion

is to be made, the input bias current to the preamplifier must be much less than the

minimum signal current that is to bc measured. The detectable signal above the

dark noise, during a typical beam gating read cycle, is on the order of a fcw nano-

amperes and therefore the bias current of the preamplifier input has to be lower

than this value, which calls lbr an V_T input stage.

The minimum dynamic range of the tube is specified by the manufacturer as

200 and therefore the preamplifier should not significantly degrade this value. The

best compromise in terms of dynamic range and low bias is a pair of discrete low
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Fig. 7. The front end of the video chain showing the details of the prealnplifier and the low pass filter.

noise rErs at the input of a fast, good quality, operational amplifier. This arrange-

ment was preferred over an H:,] operational amplifier because discrete rErs offer

much better noise characteristics. Secondly, a balanced differential configuration

is preferred over a single FET input circuit because such an.arrangement rejects

common mode noise. However, the high frequency response is degraded because

of the Miller effect which reflects the gate to drain capacitance back to the input,

multiplied by the gain of the FET.

The addition of a pair of bipolar transistors connected in cascode with the rETS

improves the high frequency response; however, in the present design a "folded

cascode' differential pair is used. The advantages it presents over the simple cascode

are several: (a) it allows a larger input voltage swing; (b) the quiescent current of

the rET and bipolar transistor can be biased separately; and (c) the output voltage

of the stage swings closer to halfway between the supply voltages. Its gain expression

is identical to a simple cascode, provided R a > Z_ where Z,, is the input impedance

of the common-base bipolar transistor and Ra is the drain resistor. This condition

is easily met, because Z_ _ 50 £L The input differential FET pair used is a 2N5911

and the bipolars are implemented by a 2N3350, a dual PNo in a single can. The oper-

ational amplifier is the high slew-rate, dielectrically isolated Harris HA-2525.

The closed-loop Bode plot of the preamplifier response is shown in Figure 8. The

measured noise was 1201_ V,m_.

The second stage in the chain is the two-pole low-pass filter which is added to

remove all high frequency noise from the video signal, especially that arising in the

vidicon bias power supplies. It consists of a two-pole Butterworth-type active

filter [16], built around a high-input impedance unity-gain buffer (Figure 7). Since

all the time constants of the vidicon tube are invariant with the signal strength,

some of the higher-frequency components can be attenuated without impairing

the linearity of the amplitude response. It is important that the filter does not alter

the dark current plateau (see Figure 4) from which the d.c. restoration is made.

The minimum breakpoint frequency to meet this requirement was found experi-

mentally to be 40 kHz.

As the target is a.c. coupled to the preamplifier it produces a signal with average
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Fig, 8. The experimentally measured Bode plot of the ",'ideo preamplifier. The insert shows the circuit
used to obtain the result.

charge balanced around zero volts. Consequently d.c. restoration is required to

bring the dark current plateau of the signal back to zero volts and is accomplished

by subtracting the preamplifier signal from the continuous dark current level of the

tube with the help of a sample and hold circuit.

Following d.c. restoration the peak amplitude voltage of the signal, within a

specified time interval, is detected and held. Conceptually, a capacitor and a perfect

diode are sufficient to perform this function; however, it is obvious that a real diode

cannot provide good peak transfer linearity because diodes exhibit voltage drops

in the forward biased condition. If instead, the diode capacitor combination is

phtced inside a negative feedback loop of an operational-amplifier, the offset is

divided by the open loop gain of the operational-amplifier, thereby reducing it to

a negligible error. A circuit based on this concept was built with the peak holding

capacitor connected as the load of an emitter follower. The base to emitter junction

of this transistor, besides replacing the diode, also supplied extra current gain in

the forward direction. A discrete operational-amplifier is used, because integrated

types are too slow. When the circuit was initially tested lot last rise input signals,

the output carried a large overshoot. As this deviation disappeared when the input

was slowed down, high frequency peaking, with a low damping ratio, was suspected
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and a suitable two-pole, one-zero shunt filter designed for the appropriate fre-

quencies cured the peaking problem without sacrificing the speed.

After each pulse detection, the holding capacitor is reset by a shorting switch.

This switch is placed inside the feedback loop of an operational-amplifier so that

the reset voltage remains constant. An input clamping switch protects the output

stage of the circuit from being shorted to ground.

Finally the analog signal voltage is measured and converted, using a single-slope

open loop circuit, into a digital output signal. This design was chosen because

of its simplicity and because it provides sufficient accuracy for 6-bit resolution.

It is accomplished by connecting the output of the peak detector to a constant

discharge sample and hold. As long as the switch of this sample and hold is closed,

the peak level of the signal is reproduced. But as soon as the switch opens the signal

starts to decay at a constant rate. The decay time to a reference level is measured

against a digital clock.

4.2. THE DEFLECTION CIRCUITRY

This circuitry drives the horizontal and vertical deflection coils which produce the

magnetic fields and which in turn control the sweep of the electron beam across

the target. Two integrators generate the horizontal and vertical sweeps under logic

control. The linear vertical sweep is applied directly to the vertical coil driver while

the horizontal linear sweep is first transformed into a voltage staircase through the

action of a sample and hold. Each step, when converted into coil current, deflects

the beam into a particular horizontal pixel location. The block diagram of the

deflection circuitry is shown in Figure 9.

During the reset, the capacitors of the integrators are discharged by JFET analog

switches. Care was taken to assure stable operation. All critical resistors are pre-

cision types and the integrating capacitors are made of low leakage polycarbonate

material.

Originally, instead of analog integrators, a natural binary counter followed by

a CMOS digital to analog converter (DAC) generated the horizontal staircase signal.

Unfortunately the DAC exhibited excessive differential non-linearities, which meant

the distances between pixels were not always constant. As an example, in the camera,

there are 8 pixel bits in each direction. If a 5°0 maximum differential linearity is

allowed, then the DAC must have at least 13 bits. Such a DAC was not available in

a low power version at the time the camera's design was completed.

Before the deflection coil drivers, the horizontal and vertical reference signals

go through adjustable amplifiers in which both gains and offsets can be varied. The

coil drivers are essentially closed loop voltage to current converters. The peak de-

flection currents for the horizontal coil driver are _+90 mA. An integrated power

operational-amplifier, the Fairchild pA 791, was used for this purpose. The peak

vertical deflection coil currents are only + 10 mA, and here a monolithic LM301A

operational-amplifier was employed.
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Fig. 9, Functional block diagram of the deflection circuits.

5. Performance

In the current application the parameters of major interest are the sensitivity, dy-

namic range and spatial resolution of the system and their evaluation was carried

out in two stages. In the first stage the performance of the vidicon camera and elec-

tronics was optimized using visible light illumination of the camera. Once this was

accomplished the performance of the whole system was studied using either X-ray
or uv illumination.

5.[. DYNAMIC RANGE MFASUREMENTS

Since the solar X-ray corona has an intrinsic brightness variation in excess of 4

orders of magnitude it is most important that the dynamic range of the system be

as large as possible in order to minimize the range of exposure times required to

display the different phenomena. Consequently particular attention was paid,

during the design of the video chain, to maintaining the inherent dynamic range

of the vidicon. Once the camera was assembled the dynamic range was measured

and the measurements repeated as the various parameters and circuits were ad-

justed and modified. The procedure followed consisted of illuminating the vidicon

with a diffuse halogen light source operated at constant voltage. While the incident

light intensity was held constant, the length of the exposure was varied using a corn-
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puter controlled shutter. The computer recorded the data and the integrated light

output was formed from an average of the central 50 × 50 point pixel array.

Typical response curves, tor several values of the target bias voltage, are shown

in Figure 10. Contrary to expectation the dynamic range is insensitive to this voltage,

which controls the gain of the vidicon, and in all cases the dynamic range, defined

as the ratio of the incident light required to saturate the tube to the noise signal,

is in excess of 1000. A target bias of 15 V was ultimately chosen for the vidicon as

this provides an optimum system gain. Too high a gain results in the formation of

'bright spots' caused by electrical breakdown in target surface non-uniformities.

These curves are only valid for exposure times which are sufficiently short for

the integrated dark current to be negligible. Experimental data showed that, at

room temperature {21 C), the dark current increased monotonically with time. How-

ever, for exposures of less than 15 s the noise contribution was at or below the level

of detectability and therefore, since the longest exposure planned for the flight

sequence was 4 s, the dark current does not limit the dynamic range of the system.

The total system response was measured in an analogous fashion except that

8.3 ,_ X-rays were used instead of visible light. The M(]" was operated in vacuum at

a pressure below I × 10-* torr and was illuminated by a uniform monochromatic

source of X-rays obtained by filtering a beam generated by electron bombardment

of an aluminum anode. The instantaneous flux incident on the MCP was measured

with a calibrated proportional counter. The measurements were performed using

the flight program which generated exposures of 1/4, 1 and 4 s by using the MOP

as a shutter and the average integrated intensity over the central 50 × 50 pixel

array was calculated by the computer as before. The response curves were generated

by varying the incident X-ray flux and typical values are shown in Figure II. It
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Fig. 11. The dynamic range of the electronic imaging system irradiated with 8.3 ,/_X-rays at the two flight
M(_gain settings.

can be seen that the dynamic range of the system is approximately 1000. Note that

even at the highest gains, where single photons are being detected, the noise con-

tribution from the Me? itself is small. The curves for the two flight settings of the

M(? gain are shown and inspection shows that a total range in incident energy of
5 orders of magnitude can be observed.

5.2. SPATIAl. RESOLUTION

The spatial resolution of the total system is a result of folding together the modulation

transfer functions (_rrF) of the individual elements of the imaging system. These

are the X-ray mirror, the MC_, the fiber optic and imagescope and the TV camera.

Of these components only the camera is capable of adjustment and consequently

its evaluation was performed first using visible light illumination.

Slow scan vidicons are inherently capable of much higher resolution than standard

TV rate vidicons and for the tube chosen modulations of 50'_'o at 800 TV lines are

typical. However, because of telemetry limitations, the video picture was limited

during flight to 256 lines per frame and this format was used throughout the test

program. The M'rv was evaluated using a Limansky mask [17, 18] and the computed

maximum and minimum sine wave responses, which depend on the relative positions

of the sampling elements and the lines in the Limansky mask, are shown in Figure

12. The result indicates that 50% modulation occurs at 12 line pairs/mm which is
within the required specification.

Since our experimental apparatus did not permit us to reproduce this test at
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X-ray wavelengths, we limited our studies of the total system response to the ob-

servation of its capability to resolve uv illuminated pinholes arranged in star patterns

of varying sizes. The star patterns were placed at the focus of a 40-cm-diameter

parabolic reflector to produce a collimated beam which was focussed by the X-ray

mirror onto the MCP. The resulting images were displayed on a TV monitor. The

tests showed that 3 arc second pinholes on 12 arc second centers could be resolved.

6. Conclusions

An electronic imaging system with a spatial resolution of better than 15 arc seconds

has been designed and built from commercially available components for the

observation of solar X-rays. The system was flown as part of a sounding rocket

payload on 31 January, 1978. Unfortunately an interlock system, designed to pre-

vent the MCPand the photographic camera from entering the focal plane at the same

time, was activated during powered flight and prevented the MC_ from leaving its

stowed position. Consequently, no X-ray data were recorded. The images that

were received showed the dark current patterns to be normal at both gain settings,

and there is every reason to believe that satisfactory solar images would have been

obtained if the M(:P had been translated into the focal plane. The payload is scheduled

for reflight in November, 1979.

In the introduction we indicated that one of the objectives of the development

of electronic imaging systems was to replace the use of film as the recording medium

in satellite experiments. If that goal is to be realized the resolution of the electronic

imaging systems has to be improved by roughly an order of magnitude from that

reported here, i.e., from approximately 10 to 1 arc second. This improvement is
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essential because the detailed study of coronal phenomena requires a knowledge

of the physical parameters of the plasma at this level.

The major factor limiting the resolution of systems of this type is the physical

dimensions of the microchannels in the MOP. Although the technology exists tbr

making glass channels with diameters down to 6 microns (a factor of 4 improve-

ment over the present system), MCPs made with this size channel are reported by

the manufacturers to have low gains. One suspects that within the immediate future

10 micron channels may be a practical limit. Charge coupled devices (CCDS) have

also been proposed for X-ray detectors [19]. The most promising versions have

square pixels with sides of 15 microns. CCDS have the advantage of a negligible

dead space between pixels. However their sensitive areas are rather small; the largest

CCDS currently planned, for instance, being 800 × 800 arrays occupying an area

of 1.44 cm 2 [20]. In contrast M_1"Sare commercially available with circular sen-
sitive areas in excess of 44 cm 2.

In the event that a limit to the pixel size exists at around 10 microns, the only

alternative is to increase the focal length of the X-ray optical system. For instance

the large space platforms, envisageo for the Shuttle era, will be capable of accom-

modating an instrument with a 5 m focal length. Such an instrument would have

a plate scale of 24 microns per arc second and thus, with a channel size of I0 microns,

angular resolution on the order of ! arc second should be possible.

In conclusion, our experience indicates that even though electronic imaging

systems are practical, if they are to replace film as the prime detector in the focal

plane of high resolution solar X-ray imaging experiments, there will have to be

modest improvements in the geometry of the detectors coupled with an increase

in focal length of the optics. Our studies have shown that the sensitivity of electronic

systems for X-ray detection is equal or superior to film. Therefore observations

with improved time resolution will be possible since there will be no limitations

on the number of images that can be recorded, provided that the telemetry systems

are capable of handling the data rates. In summary, if the technological conditions

are met, then the techniques of high resolution imaging using electronic detection

will significantly augment our observational capabilities and will be extremely

helpful in expanding our knowledge of coronal transient phenomena.
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Abstract. The properties of coronal arches located on the peripheries of active regions, observed durilTg a

sounding rocket flight on March 8, 1973, are discussed. The arches are found to overlie filament channels

and their footpoints are traced to locations on the perimeters of supergranulation cells. The arches have

a _ide range of lengths although their widths are well approximated by the value 2,2 x 109 cm. Comparison

of the size of the chromospheric footprint with the arch width indicates that arches do not always expand

as they ascend into the corona. The electron temperatures and densities of the plasma contained in the

arches were measured and the pressure calculated; typical values are 2 × 10 _' K, I × 10 '_ cm _, and

2 × 10 J dyne cm -', respectively. The variation of these parameters with position along the length of the

arch indicates that the arches are not in hydrostatic equilibrium.

1. Introduction

Observations of coronal X-ray and EUV emission (Vaiana etal., 1973a, b; Tousey

et al., 1973; Noyes et al., 1975) have shown that the topography of active regions can

be described in terms of a hierarchy of loops or arches. Classified by their location within

the active region they are:

(I) Loops of the active region core which connect regions of opposite polarity across

the neutral line (Krieger et aL, 1971).

(II) Compact volume loops which surround the core and occupy a region somewhat

larger in size than the H :_or calcium plage (Svestka, 1976). The average pressure within

this region decreases uniformly outward from the center (Davis etal., 1975). The

topography of such higher, often unresolved loops is well approximated by an extrapo-

lation of the photospheric magnetic field using a potential field model (Poletto et al.,

1975).

(11I) Loops which extend outward from the active region to form arcades that

connect the compact volume to the surrounding photospheric field. The loops may

provide connections between active regions (Chase et al., 1976) or even between active

regions on opposite sides of the equator (Svestka et al., 1977).

A series of images which contained excellent examples of loops in category (1II) were

obtained on March 8, 1973, during a sounding rocket flight of a grazing-incidence X-ray

telescope. The wavelength range of the images differs slightly from those obtained later

with the S-054 experiment on Skylab (Vaiana et al., 1974) for the short wavelength cutoff

occurs at 8 rather than 3 _,. This is a characteristic of the surface material of the grazing

incidence mirror (fused silica, chosen for its low scattering) and has the effect of reducing

the contribution of the radiation from higher temperature material. The point response

function of the mirror at 8 A, has a FWHM of about 2 arc sec while 50% of the energy

Solar Physics 80 (1982) 295-307. 0038-0938/82/0802-0295501,95.

Copyright _c" 1982 by D. Reidel Publishing Co., Dordrecht. Holland, and Boston. U.S.A.
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of the image of an on-axis point source is contained within a radius of 31 arc sec. The

comparable values for the S-054 mirrors are 4 and 48 arc sec respectively and the

difference between these two sets of specifications indicates the decreased scattering of

the new mirror. The images were recorded on Eastman Kodak SO 212 film.

2. Morphological Properties of the Coronal Arcades

2.1. DETAILS OF THE ANALYSIS

The arcades containing the bright X-ray loops (identified by arrows in Figure la) are

associated with the two active regions McMath 12259 and 12261. Their appearance at

different exposure levels and through different wavelength filters is shown in Figure 1.

The X-ray images have been compared with both chromospheric spectroheliograms

and photospheric magnetic field observations, using photographic overlay techniques,

to study the correspondence between the structures seen at different levels in the solar

atmosphere. The X-ray and H:t observations were made at 18 :00 UT on March 8 and

the Ca K observations at 16:46 UT. The images can be overlaid either from a

knowledge of the orientation of the X-ray images with respect to heliocentric north,

determined from the measured roll orientation of the rocket payload, or by using features

on the solar disk which are well separated and visible in all sets of images to manually

align pairs of images. Both techniques allow pairs of images to be superimposed to an

accuracy of + 1° in rotation. The corresponding point to point uncertainty between

different images then depends on their distance from Sun center. For features located

in the McMath 12259 and 12261 active region complex, this uncertainty varies from + 3

to _+12 arc sec. To this must be added the uncertainty in superposing the solar limbs

on the different images which is typically no worse than + 5 arc sec. Adding the

uncertainties quadratically leads to a range in the point to point uncertainties between
_+6to +13arcsec.

Efforts to obtain simultaneous magnetograms from a ground based observatory were

foiled by inclement weather across the western United States. Although some data were

obtained, no full disk magnetic field measurements were recorded before 17 : 00 UT on

March 9, at which time data from the Mt. Wilson observatory are available. In an

attempt to compare the X-ray observations with the photospheric magnetic field, the

data from March 9 were used to reconstruct the photospheric magnetic field at the time

of the rocket flight by correcting for solar rotation. Where information from KPNO

exists it was used to cross-check the extrapolation. Since the magnetic field and X-ray

data were obtained 23 hr apart any conclusions drawn from their comparison assume

that the large scale features did not change significantly during that interval.

2.2. MORPHOLOGY OF CATEGORY (Ill) LOOPS

The category (III) loops occur in groups or arcades with the loops in each arcade

separated from adjacent loops by a distance approximately equal to the loop's width.

Comparison of the X-ray images with magnetograms (Figure 2) shows that the loops
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(a) (b)

(c) (d)

Fig. 1. ]-he active region complex consisting of McMath 12259 (upper) and McMath 12261 (lower)

observed at 18:00 UT on March 8, 1973. The coronal arcades are indicated by arrows. The waveband and

exposure levels are (a) 8 37, 44-6(I A, and 58.6 s; (b) 8-37, 44-60 ._, and 2(I.3 s: (c! 8-37, 44-60 A, and

0.Ss;(d)8 20_ and 58.6s.
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Fig. 2. The association ofX-ray, H_( and magnetic features. (a) X-ray image showing the arcades of bright

loops and filament cavities. (b) Simultaneous H', photograph showing the location of the filaments and

filament channels. (c) A schematic showing the location of coronal arcades above active filament channels.

(d) The photospheric magnetic field obtained by correcting the Mt. Wilson magnetogram from 17:00 UT

on March 9, 1973 for solar rotation,
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emerge from localized areas within the active region where the field magnitude and

gradients are high. The loops connect the field at the center of the active region to the

surrounding background field and these connections are not restricted to fields originat-

ing on the same side of the equator. There is no preference for connecting to preceeding

or following polarity within the active region nor does the age of the active region appear

to have any influence on the presence of arcades.

When the X-ray and H_ images are overlaid the arcades of category (III) loops are

found to be associated with active filaments. In particular the loops of each arcade span

a particular filament thus forming a connection between areas which are separated by

the neutral line of the longitudinal magnetic field.

The presence of these arcades creates a marked difference in the X-ray morphology

of active and quiescent filaments. The latter, when seen in projection against the disk,

appear as long, dark cavities surrounded by diffuse X-ray structures (Figure 2). Obser-

vations at limb crossings (Serio et al., 1978) show that the cavities are closed by faint

loops. The cavities contain little, if any, material at a high enough temperature to emit

soft X-rays and have an average height of 5 × 109 cm. In contrast the corresponding

regions above the active filaments are the sites of the arcades of bright X-ray loops which

are of a comparable height to the quiescent filament cavities.

In general the active filaments, seen in these images, extend into filament channels

which show little or no H7 absorption. However the channels do contain a neutral line

around which the photospheric field shows the same orientation, interpreted from the

fibril alignments, as the region surrounding the active filament. Close inspection of the

overlaid images shows that the loops are located either above a filament channel or over

a segment of the active filament where the H _ absorption is weak. Loops are not present

above strongly absorbing sections of the filament which are located beneath X-ray

cavities similar to those found above quiescent filaments.

This contrast in X-ray morphology between the cavities observed above absorbing

filaments and the bright loops above filament channels, with the loops occupying the

same general volume as the cavities, provides circumstantial evidence for a connection

between the appearance of bright X-ray loops and the subsequent development of a

filament (Davis and Krieger, 1978, 1982).

The outer footpoints of the arches can be traced to localized brightenings in both the

Ca K and H_ spectroheliograms. Since adjacent loops have separations on the order

of one arc minute and the images can be aligned to + 10 arc sec, the identification of

each loop with a specific brightening is relatively unambiguous even though the X-ray

loops cannot be traced directly to the chromosphere. In Ca K the brightenings appear

as enhancements of the normally bright boundaries of the supergranulation network

(Figures 3 and 4). Only a segment of the network perimeter is enhanced suggesting that

the loops are anchored to localized areas where the magnetic flux, concentrated by the

convective motions in the cell, is dense, well ordered or both. In H:_ the brightenings

appear as groups of bright convection cells with the surrounding fibrils aligned perpen-

dicularly to their major axes, confirming that the footpoints are localized sections of the

cell boundary. In one case (McMath 12259) two arches appear to originate from
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NE 0RK \ R,G.TENINGS
BOUNDARIES x_.._. AT ARCH

FOOTPOI NT$

Fig. 3. X-ray, H:t and Ca K images of McMath 12259 showing the termination of loops from different

arcades in the same supergranulation cell (A) and the X-ray loop (B) which has neither termination within

the compact volume of an active region.

opposite sides of the same network cell (identified as A in Figure 3). These arches are

components of two separate arcades and there appear to be no cases where arches from

the same system terminate in the same cell.

3. Properties of Individual Arches

3.1. PHYSICAL DIMENSIONS

The physical dimensions, length and breadth, of individual category (III) arches were

measured from the X-ray images. The arch lengths were measured directly and were

corrected for projection effects resulting from both their position on the solar surface

and their vertical extension. To determine the widths, the images were digitized, using

a 3 arc sec square aperture, converted into incident energy and deconvolved to remove

the effect of the telescope point response function. Sections were made across each arch

at several locations and an average made of the measured full widths. The cross-sections

OR[GiN/_,L PAGE
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Fig. 4. X-ray, H:t, and Ca K images of McMath 12261 showing the location of the arch footpoints in
network brightenings and identifying the arches (C) and (D) whose properties are described in the text.

did not show any evidence of structure within the arch; however, the resolution of the

telescope-film system is marginal for revealing the structure of emitting features at or

below 15 arc sec unless they are accompanied by substantial intensity or temperature

gradients.

Inspection of the data reveals the following points:

(i) The width and length distribution of the individual arches have lower limits of

1.5 X 109 and 5 x 10 _ cm, respectively. The dimensions of the arches are comparable

to those of loop-prominence systems.

(ii) Arch widths appear to be independent of their lengths and are well approximated

by a single, average, value of 2.2 + 0.3 x 109 cm.

By comparison the loops of categories (I) and (II) are typically both shorter and

narrower. The ranges of values of all three categories are summarized in Table I.

TABLE l

Dimensions of active region loops

Category (I) Category (11) Category (Ill)

Active region cores Compact volume loops Outward extending loops

Width-cm 7 X 107--5 X 10s 5 x 10L1.5 x 109 I x 10_-3 x 10'_

Length-cm 7 x 10s-2 x 109 1 X 109-I X 101° 5 x 10'_-5 x 10 TM
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It has been suggested that the lengths of individual arches may be governed by a

stability condition which equates the time scales for conduction and radiation (Tucker,

1973). By expressing the time scale for conduction in terms of the thermal diffusion

coefficient for Coulomb collisions parallel to the magnetic field (Spitzer, 1962), and

following Tucker and Koren (1971) for the radiative energy loss, the maximum length,

L ....... of an arch can be written as

T9/4

L ..... -_ 2.9 × 103 ....... cm,
/'/e

where T is the temperature in degrees K and ne is the electron density in cm-3.

The arches have observed densities between 0.7 and 1.2 x 10 9 cm -3 and tempera-

tures between 1.8 and 2.5 x l0 6 K. These values correspond to maximum lengths

ranging from 2 × 10 t° to 1 x 10 '_ cm. None of the observed arches exceed this limit and

in general their measured lengths are less, by a factor of 2, than their respective limit.

3.2. THE STRUCTURE OF TFtE BASE OF CORONAL ARCHES

If the area of enhanced network identified with the footpoints of the coronal arches

defines the chromospheric cross-section of the loop, then the change in the cross-section

of the loop as it rises into the corona can be determined. Although the chromospheric

brightenings have rather irregular shapes they are elongated along the network bound-

ary. Consequently their cross-sections can be characterized by major and minor axes.

The measured lengths of each set of axes, after correction for their projection on the solar

disk, were found to vary over a factor of three. Since the X-ray cross-sections are roughly

constant for all loops, the expansion of the loops from the chromosphere into the corona,

for this data set, is inversely proportional to the size of the chromospheric major axis,

when this parameter is used to characterize the size of the footpoint. Expansion factors

varied from 0.8 to 3.2 with 40_o of the loops showing a contraction rather than an

expansion. Therefore we conclude that on average the loops tend to maintain the same

cross-section as they ascend into the corona.

This result is contrary to the generally accepted view that the field lines at supergranule

boundaries and hence by inference the field lines within loops diverge as they ascend

into the corona (Pneuman and Kopp, 1978; Kopp and Kuperus, 1968). The obser-

vational results might be in error if the downward conducted energy from the coronal

arch, which is assumed to be responsible for the chromospheric brightening, is greater

than the energy density at this level of the chromosphere. In this case the excess energy

may be transported into adjacent convection cells, creating an apparent increase in the

size of the footpoint. The evaluation of conductive fluxes in the transition zone is difficult

(see Athay, 1976), however the steep temperature gradient will have substantially

reduced the flux at the level corresponding to Ha emission, say T = l04 K, compared

to the flux at the base of the corona. An order of magnitude calculation indicates that

the conductive flux is not a significant fraction of the energy density and since at l04 K

the radiative loss function has an extremely steep temperature dependence (Cox and
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Tucker, 1969) the plasma at the base of the arch will easily adjust to a small increase

in the energy input. Therefore we feel justified in assuming that the network brightening

reflects the true loop cross-section and therefore that ascending loops are not automat-

ically characterized by an increasing diameter.

3.3. Pt.ASMA PARAMETERS AND HYDROSTATIC EQUILIBRIUM

When images are obtained through two filters with different wavelength passbands, it

is possible to determine an average line of sight electron temperature, T, and emission

measure, _ n_ d! (Vaiana etal., 1973b; Davis etal., 1975). In the present study the

images were converted into deconvolved energy arrays consisting of 3 arc sec by

3 arc sec image elements. The ratio, at any element point, of two such array values taken

through different filters, provides a measure of the average line of sight temperature
which can then be used to evaluate the emission measure at the same location from one

of the images.
To evaluate the electron density, it is necessary to make assumptions about the

structure of the emitting region along the line of sight. For the X-ray arches we have

assumed that the emitting material is distributed uniformly within a circular cross-

section and that the integrated line of sight density of the material emitting X-rays either

above or below the arch is negligible. The electron density, ne, can then be evaluated

from the emission measure by dividing the latter quantity by the measured width of the

arch at each point.

Where the parameters are presented as a function of position along the longitudinal

axis of the arch, average energy arrays were formed from the pairs of image elements

on either side of the axis. Ratios of these averaged arrays were used to obtain tempera-

tures and densities which were then smoothed by forming the running average, along

the axis, of pairs of values. Thus each value corresponds to a 6 arc sec by 6 arc sec area.

Although th$ absolute values of the points may be subject to unknown systematic errors,

the relative uncertainty between adjacent points is of the order of 2 to 3% and conse-

quently the trends that are evident in the data are significant.
The measurements show that the loops have average temperatures of

2.1 + 0.2 x 106K and densities of 1.0 + 0.2 x 109cm -3. The material between the

arches is both cooler and less dense. The upper limits placed on the temperature and

density are 1.5 x 10 6 K and 1 x 108 cm -3. When the variation of the temperature with

position along the longitudinal axis of the arches is studied, the arches are found to fall

into two groups distinguished by temperature variations which are either approximately

constant with position or which decrease steadily with distance from one termination;

the latter temperature distributions are directly correlated with the location of the higher

temperature termination within the compact volume of the active region.

When both footpoints lie outside the compact volume the data has the form shown

in Figure 5 which shows the variation with position of the electron density and tempera-

ture for the arch identified as B in Figure 3. The pressure, n,.kT, has been calculated from

the measured quantities and increases smoothly to a maximum, approximately 20_o

above the base value, at the center of the arch before decreasing. The pressure maximum
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Fig. 5. The observed temperature, density and pressure profiles along the arch (B) of Figure 3. The solid

curve depicts the pressure profile that would be obtained if the arch was isothermal and in hydrostatic

equilibrium.

occurs in the vicinity of the peak, or highest vertical extension, of the arch which is
estimated to be 5 x 104 km above the base of the corona.

If the arch were in hydrostatic equilibrium and its temperature distribution were truly

isothermal, the pressure within the arch would decrease exponentially with a scale height

2kT
Ho- s

I_m .g.

where _ is the mean molecular weight of the plasma and the other constants have their

usual meaning. Substituting the measured altitude profile of the arch into the exponential

model and using an average temperature of 2 x 10 6 K to calculate the scale height, the

solid curve of Figure 5 is obtained. The difference between the predicted curve and the

actual data is quite dramatic and illustrates that even seemingly stable arches do not

necessarily exist in hydrostatic equilibrium.
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Fig, 6 Temperature and density profiles along the arches (C) and (D) of Figure 4 showing (a) the linear

temperature decline with distance from the active region and (b) the density enhancement described in the

text.

The observation that loops exist in non-hydrostatic equilibrium agrees with the

observations of Foukal (1976) for the much cooler loops (104 < T < 106 K) associated

with sunspots, but is in contrast to the assumption made in several theoretical papers

(e.g., Rosner et al., 1978) where hydrostatic equilibrium has been used as the starting

point in the development of a theoretical description of the geometry and thermal

stability of X-ray loops.

When one of the footpoints lies within the active region the longitudinal variations

of the temperature and density are similar to Figure 6 which shows the data for the loops

identified as (C) and (D) in Figure 4. In both cases the temperature decreases linearly

outward from the active region with a longitudinal temperature gradient between

2-3 × 10- ] deg K m _. In general the density increases _lightly over the same distance
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(Figure 6, above) although not sufficiently to compensate for the falling temperature in

the pressure term which also decreases from one end of the arch to the other.

The second example (Figure 6, below) belongs to an arcade where several of the

arches have bright knots at or near their apexes. The analysis shows that the knots owe

their increased brightness to a substantial increase in density. The knot in the example

shown has a volume of 1.5 x 102_ cm -s,a density of 1.2 x 109 cm- 3, which is 50_o above

the value for the rest of the arch, and a mass of 3 x 10_3g. We have rejected the

hypothesis that the density increase is simply a projection effect because we are unable

to duplicate the observed intensity distribution by numerically modelling the expected-

distribution for a variety of possible geometries. If this identification is correct then the

violation of hydrostatic equilibrium is even more severe in this arch and its neighbors

in the arcade which show the same characteristic.

4. Conclusions and Discussion

Observations have been made of a category of coronal arches found on the periphery

of active regions. The arches are associated with active filaments and they occur above

filament channels rather than above regions where the H_ absorbing filament is clearly

defined.

The terminations of the arches, where they are visible outside the active region, have

been projected to locations on the boundaries of supergranulation cells. These locations

are characterized by brightenings in Ha and if the bright areas are an accurate represen-

tations of the cross-section of the arch at this level in the solar atmosphere there is no

clear evidence for a general expansion of arches as they ascend into the corona.

The arches were found to have a wide range of lengths coupled with a narrow

distribution of widths which is well approximated by a single average value of
2.2 x 10_ cm.

The electron temperature, density and pressure of the material in the arches has been

measured and typical average values are 2 x 10 6 K, 1 x 109 cm -3 and 2 x 10-_ dyne

cm 2, respectively. The coronal material surrounding and between arches is less dense,

cooler and at a lower pressure than the material within arches. By determining the

variation of these parameters along the longitudinal axis of the arch, i.e., as a function

of altitude and in some cases as a function of distance from the active region, it was

found that, in general, the material within the arches was not in hydrostatic equilibrium.

Secondly, for those arches with one of their terminations lying within the compact

volume of the active region, there existed an outward temperature gradient which is

perhaps indicative of outward energy conduction from the center of the active region.

Arches were also observed with substantial density enhancements at their apexes. It

is tempting to interpret the enhancements as evidence of coronal condensations

occurring within loops. Since the same arches are located above filament channels the

obvious corollary is that the condensations are responsible for the subsequent develop-

ment of a filament. This possibility has been explored in a companion paper (Davis and

Krieger, 1982).
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Abstract, A model of filament formation based on the condensation of coronal arches is described. The

condensation results from initiating the radiative instability within an arch by superimposing a transient

energy supply upon the steady state heating mechanism. The transient energy supply increases the density

within the arch so that when it is removed the radiative losses are sufficient to lead to cooling below the

minimum in the power loss curve.

Times from the initial formation of the condensation to its temperature stabilization as a cool filament

have been calculated for various initial conditions. They lie in the range 104 to 103 s with the majority of

the time spent above a temperature of 1 × 106 K.

Under the assumption that the condensation of a single arch forms an element of the filament, a complete

filament requires the condensation of an arcade of loops. Using experimentally derived parameters, filament
densities of 10 L3 to 10 t2 cm 3 can be obtained.

1. Introduction

1.1. BACKGROUND

X-ray observations of the solar corona have shown that arcades of X-ray loops situated

on the boundaries of active regions are frequently located above active filament channels

(Davis and Krieger, 1982). The archetypal example is the active filament complex,

consisting of filaments and filament channels, observed to the SE of McMath 12261

between 7 and 9 March 1973 (Figure 1). At the start of the observations the filament

channel has an elliptical shape which shows little change for 24 hr. The X-ray obser-

vations, taken at this time, show that the filament channel is located directly beneath

an arcade of loops having bright knots at their summits, which are the result of a local

increase in the electron density. During the following 24 hours a filament is observed

to develop within the channel. The observations suggest that filaments form out of

coronal arches and it is tempting to identify the bright knots with the density pertur-

bations proposed by Hildner (1974), Raadu and Kuperus (1973), and others (see

Tandberg-Hanssen, 1974) to describe the initial stage of filament formation.

In these models a density perturbation grows and cools because the radiative losses

z and T _; thus, the cooling produces a decrease in pressure, andare proportional to ne

the resulting compression by the surrounding medium will produce a further increase

in density and increased cooling. The additional energy needed to halt this cycle cannot

be supplied by the surrounding medium because conduction across the field lines,

running through the perturbation, is inhibited. These models require a large initial

compression to start the cooling cycle so that it will proceed fast enough to account for

Solar Physics 81 (1982) 325-338. 0038-0938/82/0812-0325502.10.

Copyright (c_ 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston. U.S.A.
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Fig. 1. The growth of an active filament associated with McMath 12261. The Ha images show the

development of the filament, outlined in frame 2, between 17 : 03 UT on 7 March 1973 and 18 : 21 UT

on 9 March. (Ha images courtesy of NOAA, Boulder, USAF Palehua, and the Canary Islands Obser-

vatories.)

the time scale of formation of active filaments (Tandberg-Hanssen, 1974). As an

empirical alternative we have investigated a model based on initiating the radiative

instability within a coronal arch by providing a transient increase in the energy supplied
to the arch.

1.2. MODEL

The model is based on the thermal equilibrium of active region arches described by Pye

et al. (1978). They considered arches in their initial state to be essentially empty flux

tubes which undergo a rapid rise in temperature when energy is deposited within the

tube. Since their low density limits radiation, conduction becomes the dominant loss

mechanism. The result is a transfer of the energy to the arch footpoints located in the

lower atmosphere. The material at the footpoints responds to this conductive energy

input by 'evaporating' into the flux tube, i.e., its increase in temperature, and therefore

in scale height, allows it to rise into the flux tube (Rosner et al., 1978). The subsequent

increase in density within the arch increases the radiative losses and leads to an
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equilibrium or steady state condition in which the radiative and conductive losses

balance the rate of energy deposition.

Now consider the effect on the equilibrium condition of an additional, transient energy

input. Initially the temperature of the arch will rise and the radiative losses, Prod, which

are inversely proportional to temperature under coronal conditions (Cox and Tucker,

1969; McWhirter et al., 1975), will decrease while the conductive losses, P_,,,,d "" T5/2,

increase. Thus the energy of the transient source will be transferred via conduction to

the lower atmosphere which will respond by evaporating additional material into the

arch until a new equilibrium is reached in which the increase in the radiative losses

balances the power supplied by the transient source. After the transient supply is turned

off, the arch will be losing more energy than it is receiving and its temperature will start

to fall; but since P,-,,d _ T _ at coronal temperatures, the classical conditions for the
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Fig. 2. A pictorial representation of the sequence of events which lead to the condensation of a coronal

arch into an element of a filament.
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radiative instability may be met. If they are, the temperature will continue to fall until

a new balance is established. This occurs when the radiative losses equal the energy

supply for as the temperature falls P_o.d tends to zero.

To establish this sequence of events the arch must have a geometry which prevents

the cooling material from immediately dissipating. For instance, if the radiative insta-

bility is established within the original magnetic configuration of the arch, the cooling

material could return directly to the lower atmosphere without destroying the magnetic

configuration of the arch (Pye et al., 1978). The arch could then refill with material at

a later time (Levine and Withbroe, 1977). Therefore the relationship between the

transient supply and the geometry within which it is dissipated is important to the

success of the model.

Observations have not identified the transient energy source. However the arches

proposed as the source of the filament material extend to much greater heights than the

resulting filaments. If the final configuration of the filament has the form proposed by

Kippenhahn and Schltlter (1957) the arches must at least partially collapse to reach this

state. If the collapse precedes the condensation, the release of potential energy during

the collapse is itself a transient energy source and this assumption has been used to

quantify the model. These ideas are shown schematically in Figure 2.

2. The Energetics and Time Scales for Filament Formation

To calculate the properties of a filament formed by this mechanism and to predict the

time scales of formation as a function of the incremental density provided by the

transient supply, the equations governing the initiation of the radiative instability in the

presence of the external supply and conduction along the arch have been developed. To

evaluate these equations, a standard arch has been defined (Table I) using,experi-

mentally determined values for the plasma parameters.

2.1. TUE INCREMENTAL DENSITY REQUIRED TO OVERCOME CONDUCTION STABILI-

ZATION

Coronal arches exist in a state of dynamic equilibrium in which a balance is maintained

between the heating supply and the conductive and radiative losses. The balance is

TABLE !

Physical parameters of the standard isothermal arch based on the obser-

vations of Davis and Krieger (1982)

Length / 3.0 x 10 _° cm
Radius r 1.1 X 109 cm

Electron density n_ 1.2 x 109 cm-3

Electron temperature T, 2.0 x 106 K

Electron pressure P_ 3.3 x 10-* dyne cm 2
Cross section area A 3.8 x 10 _8 cm 2

Volume V 1.t x l029 cm 3

Height h 5.0 x 109 cm

Scale height Ho 2.0 x 10 "_ cm

Sound speed V, 1.3 x l0 s cm s
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maintained by adjusting the density of the arch by either evaporating from, or returning

material to the lower atmosphere (Pye et al., 1978). Once the arch is established within

a conduction dominated regime, the equilibrium can be maintained by slight adjustments

of its temperature. Consequently, if a positive density perturbation develops within an

arch and attempts to cool due to its increased radiative losses, the cooling will be limited

because conduction from adjacent regions in the arch connected by the same field lines

will compensate for the increased radiative losses. This can be visualized with the aid

of Figure 3 which is a schematic representation of the power loss of a coronal arch as

a function of temperature. The major loss terms are radiation and conduction and the

total loss curve is defined by the relation

Ptot_,(T) = Pco,,d(T) + P_ad(T), (l)

where Prod(T) is the energy radiated by the whole arch and P_,,,,a(T) is the energy lost

through both footpoints when the material in the arch is at temperature T. When the

arch is maintained in equilibrium by the steady state energy supply, it will exist on the

conduction dominated branch of the total loss curve where an increase in temperature

is accompanied by an increase in total losses. Increasing the arch density will increase

the radiative losses at any temperature, thus moving the minimum loss point of the curve

toward higher temperatures. However if P_o,_ = P ....... = constant, then if Prad in-

10 2

POWER LOSS AS A FUNCTION OF TEMPERATURE

FOR A CORONAL ARCH

1 I I I I I li I 1 1 I _ i I _ L
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Fig. 3. A schematic diagram showing the dependence of the power losses of a coronal arch on its
temperature. Since the functional dependence of the conductive and radiative losses have different signs,

the total power loss curve exhibits a minimum at a temperature given by Equation (5).
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creases, due to an increase in density, Pc,,.a must decrease. This implies a reduction in

temperature of the arch. Thus the net result of an increase in density will be a slight

cooling of the whole loop. The new equilibrium temperature will be closer to the

minimum loss temperature since the latter will have moved to a higher temperature. To

establish the radiative instability, the increase in density must be sufficient to drive the

arch through the minimum in the total power loss curve onto the radiation dominated

branch, where a decrease in temperature increases the total losses, thus precipitating

further decreases in temperature.

Following Jordan (1976) and assuming that conduction occurs uniformly across the

cross-section of the arch, the conduction losses through both ends of the arch are given

by

Pc,,,a(T) = 1.6 x 10- IO (2rrr 2) (T5/2 _ T_/Z) ,_ kcTS/Z, (2)

where Tb is the temperature at the base of the arch and is on the order of 2-5 × 104 K.

Although Equation (2) is strictly valid only for Tb >_ l05 K, the effect of neglecting Th

has little impact on P, ota) for, by the time a temperature is reached where the value of

Th has any effect on the magnitude of the conductive losses, the latter are less than

1 percent of the radiative losses.

Above 8 x 105 K the radiative losses (Hildner, 1974) are

Pr,,o(T) = 5.5 × 10 t7 nff VT t

--- krT ' (3)

Therefore the total loss curve is given by

Pt,,uj(T) = k,.T 5/2 + krT -1 . (4)

This function will have a minimum at a temperature given by

T,,,,,, = /9/_\|7,,_}2'7= (6.9 x 10 -_ n:l) 2/7 .
\5k,/

(5)

Consequently, to establish the radiative instability and cool the arch below Tmi., the

added density, An_, must be sufficient to increase the radiative losses so that the total

losses at T,,,m, i.e., P_ou_(T,,,i,,), exceed the energy input to the arch evaluated at the

steady state condition. Thus

e_ad(t/,, + dn_, Train) + Pcond(T)mi, >---P ....... (n,,, T). (6)

By expressing P ..... _ in terms of the conductive and radiative losses at the steady state

temperature, and evaluating the LHS of Equation (6) using Equations (4) and (5),

Equation (6) can be solved for An,.. Thus

2 -I T5/2An,. > [/'/4/71 5/7 (9.0 X 10 - n_IT + 5.2 x 10 4 -

- 0.4n1°'715"7)]1/2 - ne . (7)
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By substituting the parameters for the standard arch (Table I), we find that An,, must

exceed 2.5 × l0 s cm 3 if a new equilibrium is not to be established at some lower

temperature which is above the temperature of the minimum of the power loss curve.

For greater values of An,., conduction will not be able to stabilize the temperature and

cooling will continue until typical filament temperatures are reached.

Equation (7) has been evaluated to determine the dependence of An,. on the initial

density for various values of the length 1 and initial temperature T. Inspection of the

resulting curves (Figure 4) shows that: (1) For all arches there exist specific values of

n. and T for which the density perturbation required to initiate the radiative instability

becomes very small. For constant l (Figure 4a) the value of the initial density for which

this occurs is a positive function of temperature, while for constant T (Figure 4b) the

critical value of the initial density is proportional to a negativ e power of the length.

(2) For constant ! and T, as the ambient density increases, corresponding to an increase

in the loop heating supply, the density perturbation An,. required to drive the arch

through the minimum in the loss curve remains fairly constant for ambient densities

below 1 × 10_ cm 3 but falls off rapidly above this value.

From these results and the measured distribution ofn e,/, and Tamong active filament

arches the cooling mechanism can be expected to occur preferentially among the longer,

cooler loops of the observed distribution. They require a smaller increase in density to

establish the radiative instability which in turn places less stringent requirements on the

transient supply.

2.2. TIlE RELFASE OF POTENTIAL ENERGY AS THE TRANSIENT ENERGY SUPPLY

Our model considers filaments to be supported in a Kippenhahn-Schlflter configuration

which has been reached through the collapse of a coronal arch. If the collapse is the

initial stage in this sequence, the release of potential energy during the collapse would

appear as a transient energy source. For this particular mechanism to establish the

radiative instability the energy released must be sufficient to increase the density of the

whole arch to the required level and in the process to raise the temperature (i.e., the

internal energy) of the material to coronal values.

To estimate the latter quantity the material is assumed to reach the temperature

characteristic of the minimum of the power loss curve for the particular arch. This allows

the energy required to be expressed in terms ofn e and/by using Equation (5) to eliminate

temperature.

The integral energy equation has the form

APEarch >-- APEevap + AIEe.,._,p + Q(rad ..... d)' (8)

where APE_,._h is the change in potential energy of the collapsed material, APE_,,,p and

AIE,,,._,, are the increase in potential and internal energy of the evaporated material

respectively, and Q_d ...... d) is the sum of the radiative and conductive losses of the

evaporated material as it ascends into the arch. The second term dominates the RHS

of the equality and in comparison the radiative and conductive loss term can be
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neglected for evaporation times less than 10 4 s. In this limit their inclusion would change

the result by less than 10%.

Based on the energy equation, the maximum increase in density provided by the

collapse of an arch can be evaluated in terms of h, the height of the arch, and Ah, the

distance fallen during the collapse. Thus,

n'e = mpnegh, Ah (9)

1.5m_,_,h_.(h - Ah) + 6k(Tn, m - Tb)

and gh is the acceleration due to gravity averaged over height. By setting h = 5 x 10 9 cm

and Ah = 3.5 × 10 9 cm, values which are typical of experimental observations, and

evaluating the coefficients, Equation (9) can be reduced to

- 8 4/7 2/7
n_.=ne(5.0× 10 ne l -0.1) -l. (10)

Equation (10) has been evaluated for arches of three sizes which cover the range of
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show the range in added density needed to initiate the radiative instability for various temperature arches.

For arches whose parameters lie within these limits, the proposed model of filament formation is energe-

tically feasible.
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observed values and the results are shown in Figure 5. By comparing the result for the

maximum density obtainable by this mechanism with the evaluation of Equation (7)

(Figure 4) for the density increase necessary to initiate the radiative instability, one can

specify the ranges of values ofn e,/, and T for which the model is energetically feasible.

Ranges for two coronal temperatures are superimposed on Figure 5, and it can be seen

that the arches for which the model is successful are quite typical of coronal obser-
vations.

2.3. THE TIME SCALES OF FILAMENT FORMATION

Two times are relevant for comparing the model with observation. They are the time

for establishing the radiative instability, rl, which consists of the duration of the

transient energy supply and its subsequent conversion into increased density within the

arch, and the time, z2, once this has happened for the arch to cool and condense into
a filament.

A lower limit can be placed on r I by considering the collapse occurs instantaneously

throughout the arch, that the material then falls freely under gravity during which time

the conversion of potential energy to internal energy occurs and that the energy con-

duction and the evaporated return are governed by the sound speed. The free-fall time

through 3.5 x 109 cm is approximately 5 x 102 s. The sound speed, V_ = (kT/m_,) I/2,
for the plasma within the standard arch is 1.3 x 102 km s- i and therefore the conduc-

tion-evaporation time will be approximately 2.0 x 103 s. Thus, the minimum time

required to establish the radiative instability will be on the order of 2.5 x l0 3 S.

Once the transient source ceases, the new material which has entered the arch will

cause the arch to cool. The cooling time 1-2is defined as the time taken for the arch to

cool from its ambient, precollapse, temperature T l to the final temperature T2 reached

by the filament. T2 has been chosen for the purpose of calculation as 2 x l0 4 K. The

cooling time can be estimated by evaluating the integral

T2

f Etota t dTr2 = P,(T) + P,.(T)- O,,
TI

(11)

Q_., is the steady state energy supply which is assumed to be directly proportional to the

total electron density and its magnitude has been evaluated by assuming that, in the

pre-collapse condition, the heating supply is in equilibrium with the conductive and
radiative losses.

Substituting for the various quantities the cooling time integral becomes

I"2 =

7"2

f 3(n, + n_)kl dt
kr(T)l(n, + n'_)2 + 2k c T,/2 _ n; '(n e + n') [krn2lT; ' + 2k, T_/2 ]

1" 1

(12)
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Numerical evaluations using the temperature dependence of the radiative loss function

proposed by Hildner (1974) for several values of n'_/n e, 1, and T_, which are within the

range of permissible values, are shown in Figure 6. The cooling times generally fall in

the range of l04 to 105 s (3 to 30 hr) with the longer times being more realistic since they

require smaller increases in density and are therefore energetically preferred.

I I I I I I I I I 1 I I I I I I

INITIAL CONDITIONS (a)

L2 T, 2.8 x IOSK; J., IxlO ncm

LO

.6

AMBIENT DENSITY

.2

4 xlOScma_" __
I I I l I l I iI

10 4 I0 5 IO s

COOLING TIME-SECONDS

i 1 I l I i I I I 1 I I I I lINITIAL CONDITIONS (b)

>.- 1.2 _ _ T:2xlO6K; l=lxlo_°cm
_ZLo -
w
Q

= \ \ \uJ AMBIENT DENSITY

_o

_ 2.5

.2

O I I l 1 I 1 I I I I l _ I 1 l _ 1

10 4 IO s I0 e

COOLING TIME-SECONDS
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increase in density produced by the transient energy supply. (a)For T= 2 × 106 K and I = l x ]01°cm.

(b) For T= 2.8 x 106K and/= l0 II cm.
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Inspection of the cooling curves shows that the condensations cool rather slowly

above 1 x 106 K and very rapidly below. For example the two typical condensations,

shown in Figure 7, spend 98 _/o of their time above one million degrees which, in the

higher temperature case corresponds to 12 hr, compared to 14 min below. Although

inclusion of dynamic effects may well alter these values, observations at the wavelengths

associated with temperatures below 1 x 106 K are unlikely to yield information about

the formation of the condensation which occurs at much higher temperatures.
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Fig. 7. Cooling curves for two coronal condensations starting from different temperatures. The curves
show the length of time required to cool between two temperatures and demonstrate that the condensations

cool slowly above I × 106 K,

The length of time spent at the higher temperatures provides an explanation for the

current failure to have observed filament appearances and associated changes in the

structure of X-ray arches. Such a study was performed by one of the authors (JMD)

using the S-054 Skylab data. It was restricted to single orbits (103-4 x 103 s) since this

was the period over which sequences of good time resolved images were available. If

the present model is realistic correlations would be expected only over much longer

periods. Ideally such a study requires observations from the intermediate temperatures,

for otherwise the association of the filament appearance in H_ with a short lived X-ray

event occurring 20-30 hr earlier may be unconvincing.

2.4. THE MASS AND DENSITY OF THE FILAMENT

The model is based on the assumption that the condensation of a single arch will form

an element of length of a filament. This assumption is derived from the experimental

observations which show arcades of loops above filament channels, their absence over

existing filaments and, for irregular filaments, the location of arches only above sections
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of the filament where the H7 absorption is weak or missing (Davis and Krieger, 1982).

Since the arches within an arcade are separated by distances roughly equal to their

diameters (Figure 1), the length of the element is assumed to be twice the diameter of

the original arch.

It is also assumed that material from only half of the precollapse arch flows into the

condensation, under the action of both gravity and the pressure differential generated

by the falling temperature of the condensation. Therefore the mass of material that will

condense into an element of the filament will be

M, = mpp, nr2, la + AM, (13)
2

where the subscript a refers to the parameters of the arch in its pre-collapse condition

and AM is the added mass required to initiate the radiative instability. On the basis of

Figure 6, AM is set equal to 0.3M c. If the filament has an elliptical cross-section with

a ratio between major and minor axes of 5, the mass of the filament will be given by

3n

M� = m:pf -_ r_4r,, (14)

where 4r, is the length of the element of the filament formed by the condensation of the

arch of radius r,,. Thus since M: = 1.3Me, if no mass is lost,

rf= [O.271r, l, p_]l/Z. (15)
p:3

Thus for density ratios (P:/Pa) in the range 102 to 103 corresponding to filament densities

from 10 'I to 1012cm -3 the thickness of the filament would vary from 8 x 103 to

3 × 103 km. Condensation of the five individual arches seen in Figure 1 would result in

a filament with a mass of 6 x 10 TM g. These values are in reasonable agreement with
observation and indicate that sufficient material exists within coronal arches to form

filaments.

Finally the remaining material in the arms of the arch may either fall back into the

lower atmosphere or by a siphon action (Pikerner, 1971; Serio et aL, 1978) flow into

the condensation. In either case the result will be a dense, cool condensation supported

in a virtually empty flux tube. Ifthe steady state heating mechanism continues to operate,

the energy dissipated in the empty tube will continue to be available for evaporating

material into the arch providing a continuous mass feed to the filament. This will

compensate for the material that is frequently observed draining from the filament

because of the imperfect nature of the supporting mechanism and may explain the long

lifetimes of quiescent filaments.

3. Conclusions

A model has been proposed to condense filaments from coronal arches by invoking a

transient energy source to establish the radiative instability. The model provides a
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mechanism for cooling the arch through the minimum in the power loss curve ensuring

that the arch will cool to the temperature associated with filaments. The energy required

for this is not large and the parameters of coronal arches observed above filament

channels are adequate to generate the requisite density. Time scales for cooling the

condensation are quite long, ranging from 104 to 105 s with the majority of the time spent

above 1 × 10 6 K. Establishing a direct connection between the X-ray arch and the

appearance of the filament will require observations over a broad spectral range.

Since the X-ray observations have demonstrated that arcades of loops occur above

filament channels, the model assumes that the formation of a complete filament requires

the condensation of the arcade. In this way sufficiently massive filaments can be

obtained.

A logical extension of the basic concept suggests that the mechanism which originally

maintained the X-ray arches may continue to operate thus providing a method for

continually feeding material into the filament. Such a mechanism would explain the

extended existence of quiescent filaments.

Although the model successfully describes the broader aspects of filament formation

it is still in a very preliminary stage. In particular the identification of the transient energy

source with the release of potential energy of the collapsing arch is open to question.

However the basic premise of the model that transient heating can lead to cooling is

not affected by these questions and hopefully will provide a useful addition to the

continued studies of filament formation.
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Abstract. We compare coordinated, high spatial resolution (2-3 arc sec) observations at 6 cm and in soft

X-rays with photospheric magnetograms and optical filtergrams of two active regions. The correspondence

of the brightest centimetric components in these regions with coronal loops, sunspots and pores,

chromospheric structures and the photospheric magnetic field was determined. Our principal results are:

The association between the microwave components and coronal X-ray and photospheric magnetic field

structures is complex; in general X-ray emission was not associated with the microwave components. A

majority of the components were not associated with sunspots, although the brightest (T b :"4 x 10 6 K)

components overlay regions of strong photospheric field or high field gradients. Several of the components

coincided with the apparent bases of shorter coronal loops and 4 with the tops of X-ray loops.

The X-ray and magnetic field observations are used to constrain possible centimetric emission

mechanisms. Thermal bremsstrahlung can not be a significant contributor to this bright microwave

emission. Thermal gyro-resonance absorption is consistent with some of the observations, but untenable

for those components which are bright in microwaves, lack X-ray emission, and overlie regions of weak

magnetic field. As an explanation for the brightest (T b > 4 × 106 K) components, the g-r theory requires

coronal loops with significant currents but very low densities. Alternatively, a nonthermal mechanism

implies that the emission arises from the transition region and suggests that discrete regions of continuous

particle acceleration may be common in active regions.

1. Introduction

Much recent work in solar physics has focussed on the problem of the structure of active

regions (ARs) in the transition region and low corona. This study has been paced by

observations from rockets and satellites, which can observe X-ray and EUV emission

with high _patial and spectral resolution, and with large ground-based arrays at

centimeter radio wavelengths. The high spatial resolution (a few arc sec) of the

instruments has substantially altered our view of the transition region and corona, and

prompted the development of more realistic models of active regions.

The slowly varying component of the radio emission over ARs has a spectral

maximum at centimeter wavelengths. Only recently has this emission been examined

with sensitivity and spatial resolution approaching that of other wavelengths. Observa-

tions have shown that the brightest centimetric components are associated with

structures near sunspots, transverse fields over neutral lines or filaments (Kundu, 1977,

* Presently at the Tata Institute of Fundamental Research, Bombay, India.

Solar Physics 85 (1983) 267-283. 0038-0938/83,,'0852-0267502.55.

Copyright _ 1983 by D. Beidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
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1980, 1981), and emerging flux regions (Kundu and Velusamy, 1980). The fact that these

latter features are also associated with X-ray loops and that thermal bremsstrahlung can

produce emission at both microwave and X-ray wavelengths leads us to suspect that

at least part of the microwave emission in active regions arises in coronal loops. Recent

high resolution centimeter observations with the Very Large Array (VLA) have revealed

loop-like structures reminiscent of those observed in X-rays and EUV (Kundu and

Velusamy, 1980). Previous comparisons of imaging observations in soft X-rays and

microwaves have shown that most of the general plage-related emission in ARs is due

to thermal bremsstrahlung (Gerassimenko etal., 1976; Pallavicini et al., 1979). The

brighter centimetric components require an explanation in terms of low harmonic

gyromagnetic emission (e.g., Kundu et al., 1980; Alissandrakis et al., 1980; Felli et al.,
1981).

This paper presents the initial results of a long term study whose purpose is to measure

the plasma parameters and the properties of the magnetic field in coronal structures

through the use of combined high spatial resolution X-ray, magnetogram and microwave

data. Although this first paper is primarily observational, the results are sufficient to

constrain possible centimetric emission mechanisms. In particular we conjecture that

the results imply a significant small-scale, nonthermal component to the slowly varying
radiation from ARs.

We describe the analysis of two active regions observed on 16 November 1979. The

data include soft X-ray filtergrams from a sounding rocket flight, microwave radio maps

of total intensity and circular polarization obtained with the VLA, photospheric

magnetograms and optical filtergrams, all of comparable high spatial resolution

(1-3 arc sec). This is the first time that such coordinated, high spatial resolution

observations in microwaves and X-rays of active regions have been available. In the next

section we describe the observational data. In Section 3 we discuss the observational

results. The key results are summarized in Section 4 and discussed in the last section.

2. The Observations and Data Analysis

2.1. SOr-T X-RAY DATA

On 16 November 1979 American Science and Engineering (AS&E) launched the second

of two rocket flights designed to obtain a complete view of the solar corona at solar

maximum. This payload utilized a metallic mirror previously flown many times (Vaiana

etal., 1973). Full-disk images of the corona with an on-axis spatial resolution of

2-3 arc sec were obtained between 17 : 02 and 17 : 05 UT. The images were recorded

with two Kodak emulsions, SO-212, a moderate-speed emulsion, and SO-253, a fine-

grain holographic emulsion which permits improved definition of coronal features

(Davis et al., 1979).

2.2. MICROWAVE DATA

The radio observations were made at 6 cm with the VLA of the National Radio

Astronomy Observatory between 15 : 00 and 16:45 UT on 16 November 1979. Seven-
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teen antennas were available during the observations, providing good determination of

the two-dimensional brightness distribution. The system was sensitive to structures

smaller than 3 arc min because the shortest spacing used for these maps was 12002.

The observing procedure and calibration and cleaning methods were similar to those

discussed by Kundu and Velusamy (I 980). The observations alternated between two

active regions, Hale Nos. 16419 and 16421. The centers of the regions used for

continuous tracking were located at N 10 W23 and N32 W33 in heliographic coor-

dinates at 00 UT. Synthesized maps of total intensity and circular polarization were

obtained of a field of view of 6.4 × 6.4 arc min around each active region. The synthe-

sized beam was 3 x 6 arc sec with the long axis oriented in the north-south direction.

The dynamic range on these maps was greater than a factor of 10.

2.3. CtIROMOSPHERIC AND PHOTOSPItERIC DATA

Full-disk photospheric magnetograms were obtained at Kitt Peak National Observatory

(KPNO). The magnetograms used for our study were obtained at 15 : 43, 17 : 43, 18 : 28,

19:17, 20:07, and 21:00 UT. In addition, a full disk Hel- 10830 A, filtergram was

obtained at KPNO at 16 : 47 UT. The magnetograms at 15 : 43 and 17 :43 UT bracketed

the times of the X-ray and radio observations and therefore were used in our detailed

analysis. No significant changes in the general magnetic field in either of the two ARs

was observed on the magnetograms. In addition, video magnetograph (VMG) images

were obtained from Big Bear Solar Observatory (BBSO) and used to verify the KPNO

data.

Chromospheric data were obtained in collaboration with BBSO. Nearly continuous

H:¢ observations with time resolution of 10 s of both active regions were obtained on

16 November from 15 : 55 to 22 : 00 UT. Most of these images were centered on H 419;

only 5 rain of high resolution data were taken of H421 starting at 21 : 54 UT. A cine

version of these data was used to select individual frames for enlargment and to study

the evolution of chromospheric and photospheric structures in H 419. Frames enlarged

for the detailed study were recorded at 16 : 58, 19 : 35, and 19 : 37 UT in Ha, H:_ wings

and continuum, respectively, and in H _ at 21 : 57 UT for H 421. Full-disk patrol Ha data

obtained at 19:37 UT (H_) and 21:40 UT (near-H:¢ continuum) were used in the

alignment scheme.

2.4. METHOD OF COMPARISON

A selection of the X-ray and visible light images, the microwave maps, and the optical

images were converted to transparencies with a scale of 4.8 arc sec mm- _(40.6 cm solar

disk diameter). To compare the locations of the X-ray and microwave features, the

heliographic positions of the centroids of the sunspots that lay within the field of the

radio maps were determined, using a Mt. Wilson sunspot chart and an H:¢ image from

NOAA-Boulder. These positions were converted to celestial coordinates at 17 : 00 UT

and plotted on the radio maps. Visible light images from the AS&E experiment revealed

sunspots which were used as an intermediary to coalign the X-ray, radio and optical

data. The magnetograms were coaligned by using the fact that Ha plage emission tends
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to occur in areas of strong vertical magnetic fields. UP to 6 spot groups were used for

alignment. The alignment accuracy between the X-ray data and the radio maps was

about 5 arc sec. The overall accuracy including the optical data was 5-10 arc sec.

3. Observational Results

Figure 1 presents the 6 cm maps in total intensity (left) and circular polarization (right)

of active region H421 (top) and H419 (bottom), observed on 16November,

15 : 00-16:45 UT. The crosses denote the centers ofthe large sunspots lying within the

area of the radio maps. To illustrate the relation of the microwave emission to hot

(T e > 106 K) coronal loops and to the photospheric magnetic field, we show the radio

intensity contours of AR H 421 (Figure 2) and AR H 419 (Figure 3) superimposed on

a soft X-ray image (top) and on a photospheric magnetogram (bottom).

Table I lists the brightest microwave components in each region in approximately

decreasing order of brightness temperature (Tb). For each source its estimated size,

dominant polarity and degree of polarization (V/I), and possible physical association

are also listed. For each active region the source components are indicated on the

intensity maps in Figure 1. It should be emphasized that we studied only the brightest

microwave components in these regions. The VLA configuration used was not sensitive

to large structures or low brightness sources (e.g., plages), but was optimal for

observation of the compact, bright coronal structures typical of ARs. The noise level

of the maps was about Tb - 4 x 105 K. We concluded that the X-ray and microwave

sources in these two regions were quiescent, i.e. that no obvious flares or bursts occurred

there during the period of observation. The limitations of this statement are discussed
in the final section.

3.1. ACTIVE REGION H421

Active region H 421 was closer to disk center than H 419 (r ~ 0.75 from Sun center) on

16 November and therefore suffered less from projection effects and off-axis vignetting

and scattering in X-rays. It was apparently evolving rapidly, because BBSO observa-

tions on 18 November showed a dramatic change in the region with considerable

emerging flux in the area to the northwest of the main spot. Region H 421 contained one

dominant sunspot with penumbra of negative polarity and many small spots or pores.

The large spot had an area of 50 millionths of a solar hemisphere and a field strength

< 2000 G (Solar Geophysical Data, 1980).

The bright coronal X-ray structure of AR H421 consisted of two loop arcades

crossing the N-S magnetic inversion lines of the region. The arcades were potential-like,

with their loops oriented orthogonally to the inversion line. The salient X-ray feature

was a short, bright loop (arrow, Figure 2a) which bridged the inversion line in an area

of high field gradient near the spot. The western foot of the loop ended at the edge of

the spot penumbra. The length (~ 2 x 104 km), shape and location of this loop are

typical of a class of X-ray loops called penumbral loops (Webb and Zirin, 1981). The

inversion line swung in toward the spot and was marked by a short Hot filament; the
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Fig. I. 6cmVLAmapsofactiveregionsH16421(top) and t116419 (bottom) on 16 November 1979. The

size of the synthesized beam was 6 x 3 arc sec. Geocentric north is at the top and east to the left. The center

(0, 0) of the H 16421 map was at 263 arc sec north and 316 arc sec west of disk center at 16:00 UT, and

the center (0,0) of the H 16419 map was at 660 arc sec north and 342 arc sec west of disk center. (a) Total

intensity (R + L) map of H 16421. The lowest contour and the contour interval is 8 x 105 K. The cross shows

the centroid of the large sunspot VIS/17 in Mt. Wilson group No. 21042; the length of the arms of the cross

is 10 arc sec, which is representative of the alignment uncertainties. The letters designate individual micro-

wave components. (b) Circularly polarized (R - L) intensity map of H 16421. The first two contours are 4
and 8 x 10-sK, respectively, and the contour interval for the higher contours is 8 x 10_ K. The solid (broken)

contours represent positive (negative) values. (c) Total intensity map of H 16419. The contour levels are the

same as (a). The crosses show the centroids of sunspots V 17/20 and R21 in the Mt. Wilson group No. 21041.

(d) Circularly polarized intensity map of H 16419. The contour levels are the same as (b).
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TABLE I

List of the brightest microwave components in the ARs H 16421 and H 16419

Source Peak Size _ Polarity b Reversed? c Polarization (_o) a Association

Tb ( 106 K) (arc sec)

421 A 10.5 7 x 9 L R 23 Photospheric pores -

emerging flux loops

421 B 8 7 x 5 L R ~ 30 Foot of bright loop?
421 C 6.5 6 x 6 L R 30 ?

421 D 6.5 < 2 L R 62 ?

421 E 4.8 4 × 5 L ? 33 Foot of bright loop?

421 E' 1.5 4 x 5 L S - Top of bright loop

421 F 3.2 3 × 11 L R 25 Foot of bright loop or of

arcade loop
412 G 3.2 5 x 5 R * 25 Penumbra or neutral line

421 H 2.5 8 x 6 R S? 33 Top of coronal arcade

421 I 1.5 3 × 9 L R? 100 Foot of filament arcade loop

421 I' 1.5 3 x 12 L - - Top of filament arcade loop

421 J 1.5 3 x 4 R 9 50 Foot of arcade loops

421 K 1.5 3 × 5 R? R? - Foot of filament arcade loop

421 L _ 1 diffuse R R - Small loop over magnetic

cell

419 A 7.2 7 x 5 L R 22 Photospheric pore and/or

penumbra

419 B 6.5 11 x 6 L R 50 Photospheric pore and/or

penumbra

419 C 4.8 2 × 3 L R 40 Photospheric pore and/or

penumbra

419D 4.8 12 x 6 L S 83 Penumbral loops

419E 1.5-4.8 15 × 7 R S and R 40-100 Neutral line with high field

gradients

419 F 4 7 × 4 L? S? '_ Top of loop?

419 G 4 12 × 5 L S 80 Penumbral loops

419 H 4 6 × 4 R S 60-80 Photospheric pore and/or

penumbra

4191 3.2 4 x 5 R S? 50 Sunspot umbra

419J t.5-2.5 15 × 8 R S 33-100 Loop arcade crossing NL
419K 2.5 5 x 3 R S 33 ?

419 L 1.5 10 × 3 R " 50 9

419 M 1.5 12 x 6 R ? 50 Top of long X-ray loop

419 N 1.5 6 × 3 R S or R - Magnetic cell or foot of

penumbral loops
419 O ~ I diffuse L 9 - Foot of loops

419 P 1.5 6 x 5 L ? 100 Foot of X-ray loop?

419 Q 2.5 9 x 5 L R? 100 Foot of X-ray loop?

419 R 1.5 diffuse L ? ? Foot of filament arcade

loop?

_' The approximate FWHM dimensions of the total intensity along the short and long axis of each component. These have

not been corrected for the beam shape.

t, The sense of circular polarization at the peak intensity of the component. L is left CP (negative) and R is right CP
(positive).

Whether the sense of circular polarization (b) is the same (S) or reversed (R) with respect to the underlying photospheric

magnetic field. This assignment does not account for projection effects.

a Degree of polarization °,,(V/I) at the peak intensity of the component.
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H 421
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a) X-RAY: 1704 UT b) X-RAY + 6 CM

c) MAG: 1742 UT d) MAG + 6 CM

I I

2 arc min.

Fig. 2. Coaligned, high resolution images in soft X-rays (top), of the photospheric magnetic field (bottom)
and at 6 cm of active region H 16421 on 16 November 1979. The X-ray image is a 60 s exposure on Kodak

SO-253 emulsion. The 6 cm total intensity map from Figure ia is superimposed on the X-ray and magneto-
gram images (b and d, respectively), which are shown separately on the left side for clarity. The direction

arrows at the bottom denote heliographic directions•
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H 419

a) X-RAY: 1704 UT b) X-RAY + 6 CM

c) MAG: 1742 UT d) MAG + 6 CM

! I

2 arc min.

Fig. 3. Coaligned images similar to Figure 2 for active region H 16419 on 16 November 1979.
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bright loop appeared to cross over this structure at a small angle, indicative of a high

degree of shear in the coronal magnetic field. The bright loop and the eastern arcade

crossed the area of the highest field gradients in the region.

In order to determine parameters of the coronal magnetic field, it is important to

identify components of the bright X-ray loop in the microwave map (e.g., Kundu et al.,

1980). Unfortunately, the 6cm components in this region were tightly clustered

precluding an unambiguous identification. The component 421E appeared to be

coincident with the eastern foot of the loop, and the weak component E' to the west

with the top of the loop. But component E, left circularly polarized (LCP), also appeared

to straddle the photospheric inversion line. If E was at the loop footpoint, then it lay

east of the inversion line but was of reversed polarity to the photospheric field.

Alternatively E might have marked the location of a neutral sheet or arcades crossing

the inversion line.

The brightest microwave components in AR H 421 were < 2 to 7 arc sec in diameter.

Components A, B, C, and D lay south of the eastern X-ray arcade and well east of the

inversion line (Figure 2). The photospheric field, especially underlying A, was strong and

of positive polarity. Although the central polarization of this group was LCP, it was

surrounded by islands of RCP indicating the bipolar nature of the group (Figure lb).

The component A, which had the brightest peak (Tb = 10.5 x 106 K) observed in either

active region, was of LCP, weakly polarized (~ 20_'o) and was coincident with an He

patch which later brightened and with several pores. Just north of A was a region of

strong RCP (,4'). This suggests that A and A" were at the feet of an arcade of short loops.

The proximity of the pores and the He brightening suggests that strong emission around

A might have been associated with neutral sheets in the corona over emerging flux

(Kundu and Velusamy, 1980). The optical coverage was not adequate to definitely

identify such emerging flux.

There were no obvious features underlying components B and C in the southern part

of this group. C was flanked by two compact sources of RCP (C' in Figure lb)

suggesting bipolarity. All of the brightest sources in H 421 had lower circular polarization

(20-30°J0) except for D which was highly polarized (> 60_o).

An inclusion of negative photospheric polarity east of the neutral line (arrow,

Figure 2c) was adjacent to an area of Ha brightening and faint X-ray and microwave

emission, but the alignment accuracy precluded a definite association.

The components I, J, and K straddled a large, quiescent filament which ran generally

E-W and bounded the active region to the south. Since large coronal arcades are known

to overlie filaments and filament channels (Mclntosh et al., 1976; Webb and Zirin,

1981), the radio sources I and K probably were emission from the legs or feet of loops

crossing the filament. Component I', the southern extension of I, overlay the filament;

its emission probably came from the top of an arcade loop. The opposite polarization

of the components J and F indicates that they outlined compact loop structures crossing

a second inversion line north of the filament. The proximity of these two inversion lines

suggests that this area was magnetically complex with high field gradients.

North of the sun spot was aclas sic arcade structure with X-ray loops joining opposite
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polarity plage divided by a faint filament. The brightest X-ray structure was a large,

diffuse arch defining the northern limit of the arcade. Superimposed near the top of this

arch was component H, a bipolar source with peak Tb ~ 2.5 × 10 6 K. The component

was of predominantly RCP.

Finally, the component G was compact, bright and entirely of RCP. It was

~ 25 arc sec west of the center of the spot in an area of mixed photospheric polarity.

It could have been associated with the penumbral field, especially since there were no

bright X-ray or H:t structures in the vicinity.

3.2. ACTIVE REGION H419

Region H 419 was 2-3 rotations old and appeared stable. However, it was magnetically

more complex than region H 421 with a dominant preceding spot with a large penumbra

and some pores, and two trailing spots. The large p spot, numbered R21 by Mt. Wilson,

had an area of 270 millionths and a field strength of ~ 2500 G. The smaller central

negative spot, V 17/20, and the trailing positive spot, R20, were of nearly equal size. Two

of the sunspots (R21 and V17/20)lay within the field of the radio map (Figures 1 and

3). The large leading spot had many, bright microwave components clustered nearby.

The AR was characterized by diffuse X-ray emission spreading linearly in an E-W

band. The most notable X-ray feature was a bright, compact structure, which was not

associated with 6 cm emission, on the perimeter of the central spot penumbra. Several

bright loops to the west were just outside of the field of view of the radio observations.

Within this field of view the coronal emission generally bridged inversion lines.

We first discuss the microwave components surrounding the leader sunspot. Figure 4a

shows details of the spot structure as seen in the continuum at 19 : 35 UT. A small spot

lay within the southeast border of the penumbra, and several pores lay just outside the

penumbra. The BBSO film revealed no appreciable changes in the leader sunspot and

the pores around it between about 16:00 UT, when the radio and X-ray data were
obtained, and 19 : 35 UT.

a. b°

Fig. 4. (a) Near-H_tcontinuum image of ARHI6419 at 19:35UT on 16November 1979 showing the
sunspot structure. The arrow points to a pore that appeared after 17 :00 UT. (b) The same image with the

6 cm total intensity map of Figure lc superimposed on it.
w

7
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Figure 4b shows the microwave components superimposed over the same continuum

image. This comparison illustrates the following points: (1) The brightest components

(A, B, C, and H with Th = 4-7.2 × 106 K) were clustered in the vicinity of the

penumbral spot and pores about 20-25 arc sec south of the umbral center; the spots

and pores were all of the same polarity; (2)The strongest components (A, B, and C)

were all LCP or of reversed polarity to the photosphere; (3) The small penumbral spot

was associated with a region of low Th, i.e., a 'hole' surrounded by bright emission. The

components A, B, and C were in areas devoid of significant H_t or X-ray emission. Their

higher Th, lower polarization (20-50_/o), and association with the high field strengths

and gradients of the penumbra and pores suggest that this emission was due to a

gyromagnetic mechanism.

About 30 arc sec south of the sunspot umbra was a bright V-shaped area of X-ray

emission associated with H:t fibrils. The multiple, elongated radio components J overlay

this area. The N-S orientation of this microwave pattern, the X-ray structure, and the

H:t fibrils suggest that the emission arose from an arcade of low-lying loops crossing

the inversion line.

The central sunspot in AR H419 (Figure 4a) like the spot in AR H421, had a well

developed penumbra with no X-ray or microwave emission above it. The nearest radio

components were D and G, 15-20 arc sec away, at the perimeter of the penumbra.

The area surrounding this spot was the scene of significant activity in the visible in

the H_t film. The brightegt X-ray feature coincided with a negative magnetic spot in a

moat of positive flux at the northern edge of the penumbra (top arrow; Figure 3c). Of

flare-like brightness in Ha from 16 : 50 to 17 : 20 UT, this area was active all day and

reminiscent of the hot transient penumbral spots studied by Webb and Zirin ( 1981). This

spot was not bright in microwaves, a point we will discuss later. A pore (arrow;

Figure 4a) adjacent to the location of the magnetic knot emerged after our observing

period.

The small positive polarity arc visible south of the sunspot (bottom arrow; Figure 3c)

represents an inclusion of opposite polarity in the general field of the spot. It coincided

with dark Ha fibrils emanating from the edge of the spot and was located between the

microwave components D and N. The arc was more likely associated with N because

this component was RCP, of the same polarity as the magnetic arc, and projection
effects would have shifted it to the northwest.

The component D was a bright (T b ~ 5 × 10 6 K), compact source which lay just south

of the sunspot penumbra. It was highly polarized (83 % ) in LCP, the same sense as the

nearby spot polarity. Component G was a double source which overlay the penumbra.

Both components D and G were likely associated with penumbral loops.

The chain of components labelled E in Figure lc overlay an area of negative polarity

to the east and positive polarity to the west, an area of high field gradients. The

component F was bright and overlay a patch of H _temission, but was weakly polarized

or unpolarized. This suggests emission from the top of a loop.

Three fainter components, M, P, and Q, appeared to be associated with X-ray loops

The large component Mcoincided with the top of a long, narrow X-ray loop, in a manner
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similar to that of component H in AR H 421. The X-ray loop may have been evolving

since its feet were brighter than its midsection (Figure 3a); most quiescent X-ray loops
are isobaric.

4. Summary

The key results of our comparative study for 16 November 1979 are:

(1) The association between the microwave components and coronal X-ray struc-

tures is complex. In general X-ray emitting structures were not associated with the

microwave components. This result is supported by Schmahl et al. (1982).

(2) The association between the microwave components and photospheric magnetic

fields is likewise complex. Although about half of the radio components were associated

with strong photospheric fields, such strong fields did not always produce centimetric

emission. The brightest microwave components were associated with areas of strong

longitudinal magnetic fields or high field gradients, but not with sunspot umbrae.

(3) About one-third of the sources appeared to be associated with only the feet or

legs of coronal loops of size < 5 x 104 km. However, only some of these loops were

observed in X-rays. The existence of others was deduced from the geometry of the

surrounding magnetic field.

(4) There were five cases of possible microwave emission from the tops of coronal

loops (Table II). Four of these loops, or loop arcades were identified by their emission

in X-rays. These components were fainter (T h < 2.5 x 106 K) and more diffuse than the

other components, but had one dominant polarization.

TABLE II

Sources at tops of coronal loops

Source Peak Peak X-radiation Association

Th (10 6 K) polarity

421 E' 1.5 L yes Bright penumbral loop

421 H 2.5 R yes Bright loop arcade over
neutral line

419 J 1.5-2.5 R yes Loop arcade over neutral line

419 M 1.5 R yes Long single loop

421 I' 1.5 L no Possible filament arcade loop

(5) None of the sunspot umbrae studied had overlying X-ray emission; i.e., there is

little if any material at coronal temperatures over spots. This agrees with previous

coronal observations (Pallavicini etaL, 1979; Webb and Zirin, 1981; Webb, 1981;

Nicolas et al., 1981). Two of the 3 sunspot umbrae and the largest pore for which we

had radio observations had no significant microwave emission over them. This result

is also supported by other recent measurements at high spatial resolution (Kundu and

Velusamy, 1980; Kundu et al., 1981; Pallavicini et al., 1981). The one sunspot with

associated microwave emission (component 419I) was also the largest in both area and
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magnetic field strength. This observation is consistent with the recent model of

Pallavicini et al. (1981), which shows that thermal g-r emission may arise only over

umbrae of sufficiently large size.

(6) Finally', the sense of 6 cm circular polarization was often reversed with respect

to the underlying photospheric field, especially for the bright components. Also, in nearly

every case where we interpreted the centimetric components as denoting the legs or feet

of loops, one or both components had reversed polarization. We believe that these

reversals are related to mode coupling in a quasi-transverse region (Kundu et al., 1977;

Bandeira, 1982).

5. Discussion

A major result of this study is that a majoriO' of the individual bright microwave

components we identified were not associated with sunspots. This result is contrary to

the low resolution radio observations, i.e., that the centrimetric core emission from ARs

is only associated with spot umbrae. To quantify our assertion we drew circles with

diameters equal to the largest measured diameters of the penumbra and centered on the

umbra of each of the 3 spots we observed. In addition we drew concentric circles

10 arc sec in diameter larger to allow for alignment uncertainties. Sources which lay

within or touched these circles were defined to be 'associated' with the sunspot.

Thirty-two components for both ARs are listed in Table I. Of these only seven lay within

the three inner circles and a total of 13 lay within the three outer circles. Therefore, 19,

or 59°0 of the components were definitely' not associated with sunspots using our

criteria. This number is conservative because we did not correct for penumbral fore-

shortening and we grouped similarly structured sources together (e.g., 419E).

The existence of such a large number of strong components, not all associated with

regions of strong photospheric magnetic field, and with a low correlation with X-ray

structures means that mechanisms invoked to explain the radio sources must apply over

a large range of magnetic field strengths and outside of the range of plasma parameters

typical of ARs.

We can use the X-ray observations to constrain these emission mechanisms. First,

although low brightness temperatures suggestive of thermal bremsstrahlung may be

typical of the extended, plage-associated component of active regions (Kundu et al.,

1977; Pallavicini et al., 1981; Felli et al., 1981), we can rule out bremsstrahlung as a

significant contributor to the bright radio emission studied here. Most of the material

in a typical active region is at coronal temperatures (T,. > 106 K), and is visible in

broadband X-rays (see Webb, 1981 for a review). Therefore, since the corona is optically

thin to bremsstrahlung in both broadband X-rays and at 6 cm, we can estimate the

contribution of bremsstrahlung to the observed brightness temperature, Th, of those

centimetric components associated with X-ray structures. The 4 components associated

with the X-ray loops (Table If) have brightness temperatures consistent with their

being optically thin to bremsstrahlung (quiescent X-ray loops invariably have
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T e = 2-3 x 10 6 K). In the optically thin case the predicted T_ is

I 2dl'
Tb- v2rle/2 ne

where j"n_2 dl is the thermal emission measure along the line of sight derived from X-ray

observations, v is the frequency of the radio observations, and _ has a value of 0.16 in

2 dl in X-ray loops ofthe corona (Kundu, 1965). Using an appropriate value for ne

1028cm--s Tb_5 x 104K at 5GHz, a value too low to explain the bright radio

emission.

Gyromagnetic emission mechanisms provide the only known alternative explanation

to bremsstrahlung for the bright components of the slowly varying radiation. Nonthermal

gyrosynchrotron processes have been invoked, but these require continuous acceleration

of electrons to explain the long lifetime of the bright components and more polarization

diversity than observed. The fact that the radio brightness temperatures and the coronal

electron temperatures are often nearly equal argues for a thermal mechanism (e.g.,

Kundu et aL, 1980), such as resonance absorption at harmonics of the gyrofrequency.

This theory predicts that in coronal loops, which should be optically thin to

bremsstrahlung, the gyroresonance (g-r) absorption process makes the radio emission

optically thick where the magnetic field strength is high and where the angle 0 between

the magnetic field direction and the line of sight is large (Kundu et al., 1977; Gel'freikh

and Lubyshev, 1979). This mechanism has been invoked in an interpretation of bright

T(K)

i0 r

IO s

',/\ ",
o.

o* °* 60*\\ s __

S=2 s=3

1 I I 1 I 1 I 1

106 10 8 I0 I0 I012
Ne (cm "5)

Fig. 5. Loop temperatures and electron densities required to reach unit optical depth at resonant

harmonics, s, of the gyrofrequency. The observing frequency is 5 GHz and the scale length of the magnetic

field strength is assumed to be 109 cm. The optical depth is larger (smaller) than unity on the right (left)

side of each curve. The curved lines represent the limiting sensitivity to X-ray structures and are discussed

in the text. (After Kundu et al., 1980, Figure 2.)
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non-sunspot components in terms of neutral sheets overlying emerging flux (Kundu and

Velusamy, 1980), or emission from the tops of loops bridging magnetic inversion lines

(e.g., Kundu et al., 1977). In support of these interpretations, we find that generally the

microwave components we observed were in regions where strong magnetic fields or

high field gradients might be expected.

Figure 5 is a plot of the resonant optically thick layers as a function of temperature

and electron density from the g-r theory. The curved lines indicate the limiting sensitivity

of the AS&E X-ray rocket experiment for the detection of coronal loops at two fixed

diameters, the maximum diameter (left) of typical AR X-ray loops and the average

diameter (right) of loops in one well-studied AR (Pye et al., 1978). Structures which lie

to the left of these curves in terms of their electron temperature and density could not

be detected in X-rays. Figure 5 implies that for those components lacking significant

X-ray emission, resonance emission can only occur at the second harmonic or at high

values of 0 at the third harmonic. Six cm emission at these harmonics requires fields

of 900 and 600 G, respectively, in the corona. But about half of the components overlie

regions where the photospheric magnetic field is less than these values. Even for those

components with possible, faint X-ray emission (e.g., 421F) it is very unlikely that

harmonics higher than 3 (and therefore lower field strengths) can be responsible for the

g-r emission. Therefore, for many of the microwave components, the g-r theory implies

unreasonably high magnetic field strengths in the corona.

A different problem arises in interpreting the emission from the brightest

(T_ > 4 x 106 K) components in each region. Most of these components were associated

with reasonably strong photospheric magnetic fields, but not with X-ray emission or

sunspot umbrae. For a thermal interpretation of the radio emission, Tb < T e. Therefore,

a g-r explanation demands very high electron temperatures, low densities ( < 108 cm - 3)

and high coronal field strengths. We speculate on two possible explanations for this

emission. High field strengths could be produced in coronal loops with significant

currents. But it is difficult to understand why such currents would not also heat the loops

sufficiently to emit in X-rays unless they have very low density. Hollweg (1981) recently

reviewed mechanisms for producing nonthermal radio emission from runaway electrons

in the corona. But 'hot' loops, which were not observed here, and high electric fields

are requirements for such coronal radio emission. It is possible that such large electric

fields are produced in the transition region, where the large temperature gradient and

strong magnetic fields can readily accelerate electrons (J. lonson, private communica-

tion). If such an interpretation for the bright, non-sunspot microwave sources is

correct, then our observation of numerous, nonvarying bright sources in two undistin-

guished ARs suggests that continuous acceleration of particles may be common in ARs.

It is possible that we failed to detect small-scale transient or burst activity in these

sources. We did not observe such activity within the limitations of our study. For

instance, no Ha flares were reported in the Solar Geophysical Data bulletins in either

region on 16 November nor were any detected in H 419 on the BB SO film. There were

no significant fluctuations observed in soft X-rays between 10 : 00 and 20 : 30 UT by the

NOAA/GOES satellite at 1-8 ,_,. There were no changes observed on the six KPNO
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magnetograms obtained between 15:43 and 21:00UT. Finally, no statistically

significant time variations in the integrated microwave flux were observed during

continuous scanning from 15 : 00-16 : 45 UT. However, we cannot rule out the possi-

bility of some significant variability in one or more of the bright components. In addition,

the spectral characteristics of the radiation useful in distinguishing thermal and

nonthermal contributions were unknown.

We find that the presence of strong, longitudinal magnetic fields is not a sufficient

condition for bright microwave emission. Although many of the brightest microwave

components were associated with region s of strong photospheric fields, there were other

regions of apparently strong field that had no bright emission. For example, in AR H 421

single pores and clusters of pores north of the main sunspot had no associated micro-

wave emission. Also, the presence of an isolated magnetic knot north of the central

sunspot of AR H 419 was cospatial with bright, flare-like patches in H _tand X-rays, but

was void of microwave emission. The dependence of g-r emission on the geometry of

the magnetic field and the plasma distribution apparently restricts this emission to only

a limited number of coronal structures with high magnetic fields.

If the microwave emission at Tb = 1-4 x 10 6 K is due primarily to the g-r process,

we can understand the lack of association between the X-ray emitting structures and

the bright centimetric components. High g-r opacity is a function of a strong magnetic

field and the angle 0. If the field is too weak, the resonance layer will not be optically

thick and no emission will be observed. Since X-ray emitting plasma is confined by the

magnetic field in loops and the corona is highly conducting, the internal loop field

strength should be low. For instance, the equipartition field strength in typical AR loops

is only a few gauss and potential field extrapolations yield values of a few to tens of gauss

in some AR loops (e.g., Poletto etal., 1975; Levine and Withbroe, 1977). Although

X-ray emission certainly arises from some loops associated with strong field regions

(e.g., Webb and Zirin, 1981), most quiescent AR X-ray loops do not terminate in such

regions. Therefore, we should not necessarily expect bright centimeter emission from

typical AR X-ray loops.
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Abstract. We compare coronal holes observed in solar soft X-ray images obtained with rocket-borne

telescopes during 1974 to 1981 with holes observed on nearly simultaneous 10 830 A maps. Hole boundaries

are frequently poorly defined, and after 1974 the brightness contrast between the large scale structure and

holes appears substantially diminished in both X-rays and 10830 A. We find good agreement between soft

X-rays and 10830 A, for large area holes but poor agreement for mid and low latitude small area holes, which

are generally of low contrast. These results appear inconsistent with the popular view that the quiet corona

is sharply separated into open magnetic field regions consisting of coronal holes and closed field regions

consisting of the large scale structure.

1. Introduction

Coronal hole research was greatly stimulated by the solar soft X-ray and XUV obser-

vations during the Skylab mission in 1973-1974. High resolution images showing

coronal holes devoid of coronal emission were available on at least a daily basis and

over many solar rotations. The holes were found to be regions of magnetic field open

to the interplanetary medium and inferred to be the sources of high speed wind streams.

The Skylab results of coronal hole studies were summarized by Zirker (1977).

The end of the Skylab mission stimulated a search for alternative sources of

information to identify coronal holes. During the mission a number of full disk spectro-

heliograms were obtained at Kitt Peak National Observatory in the D 3 line of He I at

5876 ,_,. A qualitative comparison by Harvey et al. (1974) of the KPNO D 3 spectrohelio-

grams with the AS&E soft X-ray images from Skylab showed promising results for

detecting coronal holes in the D 3 line. Improved signal-to-noise ratio observations, using

He 1 10830 A,, became possible at KPNO by the end of the Skylab mission. One such

observation was compared with a Skylab He II 304 A, observation by Harvey and

Sheeley (1977) and confirmed that a coronal hole was indeed detectable with 10 830 A,.

However, because routine 10830 A, observations were started just after the Skylab

mission, no direct comparisons between the 10 830 A, and Skylab soft X-ray data could

be made.

* Operated by the Association of Universities for Research in Astronomy, Inc., under contract with

the National Science Foundation.

Solar Physics 87 (1983) 47-56. 0038--0938/83r10871--0047501.50.

© 1983 by D. Reidel Publishing Co., Dordrecht and Boston
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The contrast between coronal holes and the quiet corona viewed in the 10 830 ,_ line

is due to the enhanced population in the quiet corona of the triplet state of He 1,which

absorbs the continuum radiation from below. The physical problem posed by the

observations is why the excited ls2s ground state of the 10 830 ,_ transition should be

so abundant when it is 19.7 eV above the ground state in an ion lbrmed at chromospheric

temperatures. Helium is unique in this respect since coronal holes cannot be discerned

in lines of other abundant elements formed at chromospheric or transition region

temperatures (Huber et al., 1974). Goldberg (1939) suggested that an excess of ultra-

violet radiation in the 500,_, region could ionize He l from its ground state. This

enhanced ionization mechanism, together with the metastability of the ls2s triplet state,

would thus explain the depleted population of singlet levels.

Zirin (1975) found that calculations of a model in which He is photoionized by

coronal radiation and then recombines to populate the upper states were in good

agreement with line intensity observations. He dismissed attempts to explain the He

lines with collisional excitation models, specifically that of Milkey etal. (1973), as

hopeless. His model as the dominant process for He line formation was soon attacked

by Milkey (1975) on the grounds of an incompatibility with the observed line profiles.

Shortly afterwards, Shine et al. (1975) developed a model of thermal diffusion of He ions

into the transition region resulting in an enhanced rate ofexcitational collisions with high

temperature electrons. Although Skylab XUV observations of the center-to-limb varia-

tions of He lines by Mango et al. (1978) and Glackin et al. (1978) suggested collisional

excitation of the He I ls2s triplet state, the question of the primary excitation process

still remains unsettled.

For our purposes the important fact is that the presence of the triplet state and

consequent 10 830 ,A absorption in the chromosphere is closely coupled to the presence

of overlying hot coronal material. Because of this, the distinction between active regions

and the quiet corona is sharp in the 10 830 ,_, images as it is in X-ray images. However,

the correspondence between X-ray coronal holes and holes inferred from the 10 830 ,_

maps has been examined only for the 27 June, 1974 X-ray image obtained with an AS&E

rocket observation (Harvey and Sheeley, 1979). In that case only one large hole near

central meridian was seen, and no detailed comparisons of the 10 830 _, and X-ray hole

boundaries was made. Since the 10830/k images are now widely used to infer coronal

holes (Sheeley and Harvey, 1981), it is appropriate to compare in detail the coronal holes

observed in the X-ray images obtained in the AS&E solar rocket program with those

of the corresponding KPNO 10 830 ,_ images.

2. Data Analysis

2.1. INSTRUMENTATION

Since the Skylab period the X-ray Sun has been observed with AS&E grazing incidence

telescopes on seven rocket flights. On each flight full disk solar X-ray images were

recorded on Kodak SO-212 film using a combination of filters and exposure times.
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During this time daily He 1 10 830 A spectroheliograms have been recorded continually

at KPNO, except for some coverage gaps ranging from several days to several months

in extent. A large coverage gap occurred at the time of the 1"7 November, 1976 flight,

so that observation, described by Nolte et al. (1977), is not used in this analysis. Each

10 830 A observation was taken during a 40 min period by scanning the Sun in 4 swaths

each 512 arc sec wide. Except for 27 June, 1974, the scans were made in the solar

east-west direction. Times shown in the figures are the midpoints of the observing

periods. Details of the observations are presented in Harvey and Sheeley (1977).

The dates and times of the rocket images are listed in Table I. Two sets ofparaboloid-

hyperboloid mirrors have been used in the X-ray rocket program. The reflecting surfaces

of the older mirrors, used primarily in pre-Skylab observations, are layers of a nickel

alloy, Kanigen, deposited on beryllium. The details of that telescope were discussed by

Vaiana et al. (1968) and Giacconi eta/. (1969). The newer mirrors, consisting of fused

silica (glass), are compared with the Kanigen mirrors in Table 1 of Davis et al. (1977).

TABLE I

Rocket X-ray images

Date Time Mirror Exposure Wavelength
(UT) and filter a (]_)

27 June. 1974 19:48 glass 59 s pp 8-39, 44-64

16 Sept., 1976 18:03 Kanigen 59 s pp 3-37, 44-60

31 Jan., 1978 18:41 glass 60 s pp 8-39, 44-64
7 Nov., 1979 20:53 glass 3 s AI 8-100 h

16 Nov., 1979 17:03 Kanigen 3 s AI 3-100 b

13 Feb., 1981 19:16 glass 45 s pp 8-39, 44-64

pp is nominally 1 micron of polypropylene (C3H6) coated with 1500 ]_ of AI plus a 1500 _.

AI prefiher. AI is 1500 ]_ of aluminium without a prefilter.

b The sensitivity of the photographic emulsion at the long wavelength cut-offis unknown and

may well limit the bandpass to shorter wavelengths.

The principal differences between the two sets of mirrors are that the glass mirrors are

characterized by a factor of 2.6 larger effective collecting area at 44 _ and by a

substantially reduced point spread function.

Variations among the rocket images in mirrors, filters, and exposure times preclude

the use of a uniform set of X-ray images for this study. For each flight, the exposure

duration and filter of the image judged best for showing coronal holes is listed in the

fourth column of Table I. Images obtained through the polypropylene (pp) filter during

the Skylab mission (Vaiana et al., 1977) were normally used to study coronal holes.

Images were obtained through a similar filter on each rocket flight and are used here

except for the two cases shown in Table I where images obtained through an ultra-thin

aluminium filter were used. On 7 November, 1979 instrumental scattering from a flare

at S 13 E 20 washed out the faint regions in the pp image, while the optimum

16 November, 1979 pp image was blurred from a pointing rotation. The wavelength
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passbands at the 1° 0 transmission levels for the chosen filters are given in the last
column of the table.

2.2. DETERMINATION OF BOUNDARIES

Using transparencies overlaid on 10 830 _, full disk prints, one of us (JWH) traced the

apparent boundaries of inferred coronal holes. In some cases the low brightness

intensity rendered the identification of the hole questionable, and these boundaries are

indicated in the figures by dashed lines. In a similar manner one of us (SWK) traced

the boundaries of coronal holes on transparencies overlaid on high contrast X-ray

transparencies. These boundaries were first drawn to include all possible hole areas.

Shaded regions were used to indicate areas where the existence of an X-ray coronal hole

was questionable. These shaded regions encompassed both entire small hole candidates

and the diffuse boundaries of well established holes. The high contrast of the X-ray

features in and around holes allowed the X-ray hole boundaries to be traced in greater

detail than those of the 10 830 ,_ maps. Each set of hole boundaries was independently

traced on images with 10.8 cm disk diameters before the comparisons were made. It

should be appreciated that this determination of the position of holes and hole

boundaries in both the X-ray and 10830,_, data is a subjective process. One can

anticipate differences in hole boundaries determined by different observers or by the
same observer at different times.

For two dates the daily 10830 ,_ maps were not obtained, and it was necessary to

project hole boundaries from adjacent dates forward or backward in time to compare

with the X-ray hole boundaries. Boundaries from the 2 February, 1978 map were

projected back to 31 January, 1978, and those of 5 November, 1979 and 9 November,

1979 were projected forward and backward respectively to 7 November, 1979. In each

case the Newton-Nunn rotation rates (Allen, 1963) determined the displacements

traced with Stonyhurst disks.

The 10830 ,_, and X-ray images were aligned to within an estimated 10 arc sec by

means of the active region features which were bright on the X-ray transparencies and

dark on the 10830 ,_,prints. In the three figures the X-ray and 10830 ,_ boundaries are

superposed for each set of images.

2.3. DETAILED COMPARISONS OF HOLE BOUNDARIES

Large coronal holes show a general correlation in the X-ray and l0 830 ,_, images. The

best case is that of 27 June, 1974 shown in Figure la. The prominent X-ray hole extends

from the north pole to about 25 ° S in latitude and about 50 ° in longitude at the equator.

The eastern boundaries of the X-ray and 10830 ,_ holes are in good agreement, but

elsewhere the X-ray hole is larger, generally by several heliocentric degrees. A small but

distinct neck connecting the polar and equatorial X-ray holes is absent in the l0 830 ,_

image. The brightness contrast between the hole and the background corona is higher

in this X-ray image than in the others shown here, but even so, we see that extensive

parts of the hole boundaries are indistinct as indicated by shaded areas in Figure la.
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o

8-39, 44-64 A 1637 UT 10830 _.

8-39, 44-64 _, 13 FEBRUARY 1981 1618 UT 10830 _,

X-ray and 10830 A. boundaries of the large polar holes observed on 13 February,

1981 (Figure 1) and 31 January, 1978 and 7 November, 1979, shown in Figure 2, also

agree well to first order. The best agreement in detail is that of 13 February, 1981, but

that is the only one of the three dates for which simultaneous X-ray and 10830 ,& data

exist.

The worst agreement between hole boundaries appears in the mid and low latitude

small holes of 13 February, 1981 (Figure 1) and 7 November, 1979 (Figure 2). In the first

case no evidence of the five northern latitude holes appears in the X-ray image. Similarly,

there is no X-ray analog of the negative polarity hole in the southeast, but the east-west

10830,_ holes near the south pole do correspond to regions of decreased X-ray

brightness. However, these latter features appear to be empty filament channels

(McIntosh etal., 1976), rather than holes, when compared to Ha synoptic maps

published in Solar-Geophysical Data.

Fig. 1. Top: "[he comparison of the aligned X-ray and 10830/k images and coronal hole boundaries for

27 June. 1974. The 1fl830 A boundaries are shown in the middle panel by heavy lines, the X-ray boundaries

by light lines, tlatched arcas indicate uncertain X-ray holes. The north and south poles are indicated by

the vertical marks on the limbs in the middle panel. Bouom: The same for 13 February, 1981. The heavy

dotted lines are uncertain boundaries of 10 830 A holes. The 10 830/_ boundaries are projected on the X-ray

image.
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O

1841 UT 8-39, 44-64 A
o

X-RAY AND 10830 A HOLES

31 JANUARY 1978

o

2053 UT 20-100 A
o

X-RAY AND 10830 A HOLES

7 NOVEMBER 1979

Fig. 2. Top: The X-ray image and comparison of X-ray and 10830A coronal hole boundaries for

31 January, 1978. The 10830A boundaries are projected back in time from the 17:29UT image of

2 February, 1978 using the Newton-Nunn differential rotation rate. The 10830/k hole boundaries are

projected on the X-ray image. Bonom. The same for 7 November, 1979. The 10 830/_ hole boundaries have

been projected forward from the 18:25 UT image of 5 November, 1979 and backward from the 17:32 UT

image of 9 November, 1979 using the Newton-Nunn rotation rate. Both sets of boundaries are shown.
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3-37, 44-60 A

20-100 ._,
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16 SEPTEMBER 1976 1630, 1822UT

16 NOVEMBER 1979 1627UT

10830

10830

Fig. 3. The same as Figure 1 for 16 September, 1976(top)and 16 November, 1979(bottom). The 16 Novem-

ber, 1979 image is a composite of two images at the times shown.

The 7 November, 1979 comparison is compromised by the lack of simultaneous data,

but here again, four small 10830,_ holes within 40 ° of central meridian are not

associated with obvious holes in the X-ray image, although they do lie in regions of

relatively low emission. In addition, an X-ray hole on the equator at the west limb was
not associated with a 10830 ,_ hole.

To a lesser degree the data of Figure 3 also illustrate the poor correspondence of the
mid and low latitude holes. The four such holes observed in 10830 ,_ on 16 September,

1976 are all faint and uncertain, as indicated by the dashed lines, and while they

correspond to regions of low X-ray brightness, other regions of the X-ray corona are

of comparable or lesser brightness. This X-ray image was obtained near solar minimum

and shows a generally faint corona. The 16 November, 1979 X-ray image reflects a more

active Sun, and here again the uncertain 10830 ,_ hole boundaries correspond only

roughly to regions of low X-ray brightness. Only two small, doubtful regions appeared

as low latitude X-ray holes in that image. The region of 10 830 A emission elongated in

the east-west direction at S 40 ° is a filament channel seen in the H:_ synoptic charts

of Solar-Geophysical Data.

BLAO_< A_,Ii') WI ¢iT!i ?_-iO TO('r.:AP_
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One might expect to detect polar holes more easily in 10830 ,_ than in X-rays as a

result of the obscuration of X-ray polar holes by adjacent bright coronal features such

as loop arcades (Mclntosh etal., 1976). This does appear to be the case in the

31 January, 1978 north and south polar holes (Figure 2), but in general the X-ray holes

appear larger at the poles than do the 10830 _, holes. The best example of this is the

27 June, 1974 north polar hole in which the X-ray eastern boundary is substantially

farther from the pole than is that of the 10 830 ,_ boundary. The X-ray polar hole is also

substantially larger than the 10 830 A hole in those cases where we consider the hatched

(uncertain) area of the X-ray hole. The south pole of 13 February, 1981, the north pole

of 16 September, 1976, and both poles of 7 and 16 November, 1979 all illustrate this
result.

3. Discussion

The Skylab X-ray images have formed the observational basis for the implicit

assumption that coronal hole (CH) boundaries are sharp and well defined. Bohlin

(1977) has briefly discussed the displacement of apparent hole boundaries due to

foreground coronal emission, and Nolte etal. (1976) pointed out the occasional

presence of faintly emitting X-ray regions within or near the hole boundaries which

rendered those boundaries uncertain, but otherwise no indication of ambiguity in hole

boundaries is found in the literature. In fact, in their quantitative Skylab X-ray study

of CH 1, Maxson and Vaiana (1977) concluded that the transition from coronal hole to

large scale structure is sharp. However, they offered no quantitative definition of'sharp',

and both their contour plots of the boundaries and histograms of photographic density

in and around hole areas suggest that the uncertainties in hole areas are large fractions

of the areas themselves. Thus, past studies provide no support for the usual assumption

that coronal hole boundaries are well defined.

The contrast between the X-ray brightness of the large coronal hole and that of the

large scale structure in the 27 June, 1974 image (Figure 1) appears comparable to tb.at

of the Skylab images (cf. Zirker, 1977). This contrast appears considerably diminished

in the X-ray images of later dates as shown in the figures. Without a quantitative

photometric analysis of the X-ray holes and large-scale structures of these images, a

definitive statement about possible brightness changes can not be made. However, this

apparent decrease in X-ray contrast is accompanied by a comparable contrast decrease

in the 10 830 A data, as indicated by the dashed 10 830 _, hole boundaries in the figures.

It therefore appears that non-polar holes appearing near solar minimum and during the

rise phase of the current cycle are not so clearly discerned from the large scale structure

as was the case during the declining phase in 1973-1974. This result, coupled with the

observation that the hole boundaries are often diffuse, implies that drawing hole

boundaries with either X-ray or 10830 ,_ data is a far more subjective process than

previously believed.

Even with the above caveats, we have found a good correlation between the X-ray

and 10 830 _, data for the presence of large area coronal holes. In two cases (31 January,
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1978 and 13 February, 1981) the large holes were at the south pole and in the other at

the equator (27 June, 1974). Since the 10830 ,_ data allows one to infer holes at the

chromospheric level, and intervening coronal emission renders polar holes less visible

in X-rays, we might expect that these holes would be larger in the 10830,_ data.

Evidence of this effect can be seen in the 31 January, 1978 polar hole, but it is not the

rule. The dominant X-ray polar hole is distinctly larger than the corresponding 10 830

hole on 27 June, 1974, 7 and 16 November, 1979, and 13 February, 1981, although in

the last three cases the excess X-ray hole areas are uncertain as indicated by hatched

areas.

We have found the worst agreement between the X-ray and 10 830 ,_ holes at low and

mid latitudes. For the period 1976 to 1981, these holes, generally seen in the 10830 ,_,

data as weak holes, were small in diameter (10-20 solar degrees) and usually did not

correspond to obvious X-ray holes. In the cases of 16 November, 1979 and 13 February,

1981 there are weak holes well away from central meridian, so the poor agreement with

X-ray holes could be due to projection effects of foreground coronal material. However,

all the 10 830 ,_ maps except that of 27 June, 1974 have weak holes near central meridian

with poor agreement in X-rays, so this effect is not due to projection problems.

Weak 10 830 _, holes were reported by Sheeley and Harvey (1981 ) and appeared most

often in their Barrels display during 1976-1977. They also found that the correlation

between coronal holes and solar wind streams established during the Skylab period (cf.

Zirker, 1977) degraded since 1976. Some recurrent holes had no observed associated

wind streams, and in other cases the recurrent streams had lower peak velocities than

those of Skylab. Nolte et al. (1977) had also found similar results using the 1976 rocket

X-ray images. The role of the weak holes in the deterioration of the wind stream

correlation is unclear. Most of the Sheeley and Harvey recurrent holes, confined to

+40 ° latitude, were well defined, whereas in this study the low and mid latitude holes

are mostly weak. On the other hand, some of the well defined holes of the Sheeley and

Harvey study may well correspond to the weak holes of this study.

On the basis of the Skylab X-ray images Maxson and Vaiana (1977) have claimed

that the quiet solar corona is sharply separated into two different components - the open

magnetic field regions associated with coronal holes and closed field regions associated

with the large scale structure. The existence of low contrast holes and indistinct hole

boundaries in both the 10 830 .A and X-ray images ofthis study is difficult to understand

in the context of this two component description. These results suggest the presence of

regions where closed and open field lines may be mixed. Evidence for this more complex

picture was presented by Levine et aL (1977) based on a comparison of a harmonic

analysis of the solar magnetic field with the Skylab X-ray pictures. They found evidence

that the formation of open field regions preceded the occurrence of coronal holes by as

much as a solar rotation. They also concluded that closed magnetic fields occupied a

significant part of the area of coronal holes. More recently, Levine (1982) has presented

examples of apparently open magnetic structures which cannot be identified unam-

biguously in He ] 10 830 _, spectroheliograms. Their results and ours suggest that the

magnetic field in the quiet corona is complex in a way that is not yet understood.
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Abstract. X-ray images obtained during two rocket flights near the maximum of sunspot cycle 21 now allow

the study of the variation of X-ray bright point number over an eleven-year period covering the maxima

of the last two cycles. The new data are consistent with the earlier conclusion that the temporal variation

of bright point and sunspot number are out of phase. The quantities are related through a power law with

a negative exponent of 2,/3.

1. Introduction

The current interest in solar variability and the solar terrestrial connection has focused

attention on the Sun's magnetic activity cycle both as a source for, and as a baseline

against which the variability of other phenomena can be compared. Recent studies have

been wide ranging and have included the variation of the total UV flux (Cook et al.,

1980; Torr et al., 1980), the large scale coronal structure and the solar wind (Sheeley

and Harvey, 1978, 1981) and the polar solar wind (Coles et al., 1980). Our efforts have

been directed at understanding the behavior of regions of small scale flux emergence

known as coronal or X-ray bright points (XBP). Their interest lies both in their direct

relation to the solar magnetic field and in their identification as a possible source for

the solar wind (Akasofu, 1983; Davis and Krieger, 1982; Mullan and Ahmad, 1982;

Pneuman, 1983).

It will be remembered that bright points appear as small emission features in soft

X-ray spectroheliograms. Comparison with photospheric magnetograms (Golub et al.,

1977) has revealed their bipolar nature and thus their similarity to ephemeral active

regions (Harvey and Martin, 1973). However both this and a more recent study (Tang

et al., 1983) have indicated the lack of a one-to-one correspondence between bright

points and ephemeral regions. For although all bright points can be directly associated

with a magnetic bipole, the reverse is not true. The particular characteristics which

distinguish those magnetic bipoles which are also coronal bright points from the general

class of ephemeral regions remain unclear.

Davis eta1. (1977) and Golub etal. (1979) have shown that the frequency of

occurrence of coronal bright points is periodic and varies out of phase with sunspot

number. The phase difference is close to 180 °, i.e., the two quantities appear to be

anticorrelated. This result was based upon X-ray observations made during the Skylab

mission and during six sounding rocket flights covering the period 1970-I978. The

Skylab data covering a six-month period in 1973, provided a continuous set of observa-

tions against which the single data points obtained during each rocket flight can be

Solar Physics 88 (1983) 337-342. 0038-0938/83/0882-0337500.90.
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judged. Results are now available from two further rocket flights, launched on

16 November, 1979 and 13 February, 1981, respectively, during the maximum phase of

sunspot cycle 21. The addition of these two points to the data set extends the coverage

to an eleven-year period containing the maxima of cycles 20 and 21.

2. Results and Discussion

Representative images from the two flights are shown in Figure 1. Inspection shows that

there are few coronal bright points and that the background corona appears brighter

than found in images taken at other times of the sunspot cycle. The increased

background emission is important because of the problem of obscuration (Golub et al.,

1976). This governs the difference in visibility of a small feature when viewed against

a background of either the weakly emitting, large scale structure or the essentially

emissionless background of a coronal hole. To eliminate this difference the standard

procedure for counting bright points uses short exposures where the background is at

or below the threshold of detection. Although this lowers the number of bright points

that are observed, it removes the bias between regions containing different structures.

For the Skylab data a 4 s exposure was used.

7 NOVEMBER 1979 13 FEBRUARY 1981

Fig. 1. Full-disk X-ray images recorded on 16 November, 1979 and 13 February, 1981.

The relevant instrumental parameters for the two rocket experiments are collected in

Table I. On each flight nominal exposure times of 1, 3, 9, and 27 s are available. To

normalize the rocket data the bright points were counted on exposures where the

product of the relative efficiency and exposure time approximates 4 s. The relative

efficiency is defined as the product of the filter and prefilter transmissions and the

mirror's effective collecting area at 44 ,_. For these two flights 9 and 3 s images were
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selected and the values listed in Table I are the actual exposure times measured from

the telemetry record.

Although an understanding of the origin of the increased background is not essential

to this study, it is useful in providing a quantitative estimate for the obscuration

correction. Analysis suggests that the background arises from the presence of extended,

low density loops associated with, and having temperatures typical of, active regions.

This conclusion is based upon interpretation of the images and a preliminary analysis

of coronal spectra recorded during the second of the two flights. The spectra came from

a 1 arc min 2 field centered at S03 W42. The field was located betwen three active

regions and contained emission only from the large-scale structure. A line ratio analysis

of various hydrogen-like and helium-like ions leads to a plasma temperature of

2.5 × 10_ K. This is above the range of 1.5 to 2.1 × 106 K previously reported for the

quiet Sun (Withbroe, 1975; Maxson and Vaiana, 1977; Mariska and Withbroe, 1978)

and which has at other phases of the sunspot cycle formed the background against which

the earlier bright point counts were made.

For X-ray telescopes the power emitted by a plasma in the temperature range 1 to

6 × 106 K, integrated over all wavelengths, reaching the focal plane is proportional to

the second power of the electron temperature (see Vaiana et al., 1977, Figure 32). Thus

an increase in coronal temperature from 2.0 to 2.5 x 106K will raise the detected

emission by a factor of 1.5. That is, the background on a 4 s exposure from the rocket

flights at solar maximum should be comparable to that on a 6 s exposure from the earlier

period. This is found to be the case, and although this analysis is almost certainly an

oversimplification, it has been used as the basis for correcting the data for the increased

obscuration. The approach can be justified by noting that the temperature of the

large-scale structure is likely to vary over the solar surface and will almost certainly be

lower outside the active region zone. Thus the correction factor should be conservative.

However one might also expect an accompanying increase in the amount of material

at these temperatures with the increased background arising from a combination of both

these factors. The increase in density of the large-scale structure must be rather modest

for the emission measure, estimated from the spectrometer data, is not inconsistent with

the results of Maxson and Vaiana (1977). Thus the higher temperature appears to make

the dominant contribution to the increased background and applying the correction

factor of 1.5 to the observations from the whole disk is more likely to cause the number

of bright points to be over- rather than underestimated.
On balance the factor of 1.5 is believed to be a reasonable correction for the increased

obscuration. Using this value the corresponding decrease in bright point visibility is

approximately 30°o (see Golub et al., 1976, Figure 1). Therefore the measured values

have been increased accordingly by a factor of 1.3. A final correction was applied to

compensate for the fraction of the observable disk occupied by active regions at the time

of the observations and which were therefore excluded from the area in which bright

points were counted. The data are summarized in Table I.

The variation with time over sunspot cycles 20 and 21 of the corrected bright point

counts is shown in Figure 2 where they are compared with the yearly averaged sunspot
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TABLE 1

Instrumental characteristics and bright point statistics

Date Relative Exposure Nmea_ Active Ncorr,ct, d

efficiency (s) region

at 44 _ correction

16 Nov., 1979 0.433 8.94 9 1.16 13.6 + 3.5

13 Feb., 1981 1.233 2.84 7 1.27 11.6 _+3.4

number. The new data provide additional support to our previous conclusion that the

temporal variation of large and small scale flux emergence is out-of-phase. Both sets of

measurements have been normalized to their greatest values which occur for sunspots

at the maximum of cycle 21 and for bright points at the minimum between the two cycles.

It is possible that this presentation overemphasizes the single peak in the bright point

data and the absolute amplitude of the bright point curve should be viewed with this

in mind since we do not yet know whether the magnitude of the peak is typical of bright

point behavior.
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To test for interdependence between these indicators of large and small scale flux

emergence we have compared the corrected bright point counts with the weekly average

sunspot nulnber, centered on the day of the bright point observation (Figure 3). A

weekly sunspot average was used to provide a measure of global, rather than local

activity. The data fit a power law of the form

NxB e = 421.1Nss °662 .
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The reduced ;(2 for the fitted curve is 0.9 and P(Z 2) is 0.5 indicating an acceptable fit

to the data. The fact that the data points are from two sunspot cycles suggest that this

relation could be used successfully as a first order predictor of future bright point
behavior.

The anticorrelation of the small and large-scale components of the emerging flux

spectrum has been interpreted as evidence of a constant pattern of flux emergence over

a solar cycle (Golub et al., 1979). This hypothesis has been questioned (Bonnet, 1981)

in light of the result of Howard and LaBonte (1981) who find that considerably more

flux is emerging during cycle 21, than emerged during cycle 20. However, the constant

flux hypothesis was based on the observations over a single cycle, for which the result

is still valid. It did not exclude inter-cycle variations in the total flux emergence.

However, bright point data now exist from the maximum phase of two cycles. The

comparison of these data show that the bright point minimum at the maximum of

cycle 21 falls approximately a factor of 2 below the value at the previous maximum.

Interpretation of this result in terms of the power law relationship suggests that the

higher level of small scale flux at the cycle 20 maximum is compensating for the lower

level of large scale flux and vice versa at the maximum of cycle 21.

The implication of this result is that the amplitude of the bright point maximum at

the next solar minimum will depend more on the depth of the sunspot minimum than

on the difference in the total flux between cycle 20 and 21. Since the 1976 minimum was

not deep by historical standards, the observed numbers being over twice the mean of
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cycles 8-20, the possibility exists for even more dramatic XBP increases at future solar

minima.

Finally, many aspects of the behavior of XBP remain enigmatic. The reason for the

lack of correspondence, for instance, between the temporal behavior of bright points and

ephemeral regions, which do not appear to show the dramatic out-of-phase variation

with sunspots (Martin and Harvey, 1979), is still not known. All studies have shown

that ephemeral regions are more numerous than bright points but no study has yet

elucidated the particular characteristics which distinguish the two phenomena. We

support the conclusion of Tang et al. (1983) that joint simultaneous, high spatial

resolution, observations (soft X-ray and magnetograms) of several days duration are

necessary to resolve this problem and suggest that the observation period provided by

a space shuttle flight, scheduled late in the declining phase of the current cycle, would

be ideal for this test.
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Abstract. We examine observations relating to the evolution of the polar magnetic field around sunspot

maximum, when the net polar flux reverses polarity and coronal holes redevelop around the poles. Coronal

hole observations during the last two solar maxima are examined in detail. Long-term averages of the

latitudinal dependence of the photospheric magnetic field and the evolutionary pattern of the polar crown

filaments are used to trace the poleward motion of the reversal of the large-scale surface field, and are

compared to the redevelopment of the polar holes. The polar holes evolve from small, mid-latitude holes

of new-cycle polarity which expand poleward until they join and cover the pole. We find that the appearance

of these mid-latitude holes, the peak of flux emergence at low latitudes, and the polar polarity reversal all

occur within a few solar rotations. Lagging 6 months to 1½yr after this time, the polar crown disappears

and the polar holes redevelop.

These results are examined in the context of phenomenologicat models of the solar cycle. We believe the

following results in particular must be accounted for in successful models of the solar cycle: (1) The process

of polarity reversal and redevelopment of the polar holes is discontinuous, occurring in 2 or 3 longitude

bands, with surges of flux of old-cycle polarity interrupting the poleward migration of new-cycle flux. There

is a persistent asymmetry in these processes between the two hemispheres; the polarity reversal in the two

hemispheres is offset by 6 months to 1½yr. (2)Contrary to the Babcock hypothesis, the polar crown

disappears months after the magnetic polar reversal. We suggest one possible scenario to explain this effect.

(3) Our observations support suggestions of a poleward meridional flow around solar maximum that cannot

be accounted for by Leighton-type diffusion.

1. Introduction

The simplest description of the solar magnetic field is as a dipole oriented along the

rotation axis with radial, unipolar fields at the poles. These polar fields are strongest and

of maximum area at solar minimum. Because coronal holes form in regions where the

large-scale field is unipolar, we expect the poles to be covered by holes at solar minimum

and this has been consistently observed (Waldmeier, 1981; Sheeley, 1980; Nolte et al.,

1977).

Recent phenomenological concepts of the formation and development of coronal

holes (e.g., Bohlin and Sheeley, 1978; Hundhausen, 1977) have generally invoked the

ideas originally outlined by Babcock (1961) and Leighton (1964) for the explanation of

the solar cycle. The Babcock and Leighton models are qualitative descriptions of the

evolution of surface magnetic fields placed in the context of a dynamo theory. In these

Solar Physics 92 (1984) 109-132. 0038-0938/84/0921-0109503.60.
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models a weak initial poloidal field is amplified by the solar differential rotation to form

a strong toroidal field. This field rises to the surface by magnetic buoyancy where it forms

bipolar magnetic regions (BMRs). The BMRs are dispersed by random walk diffusion

which preferentially directs the following polarity fields poleward. During this period

cyclonic convection, acting on the toroidal field, produces a toroidal current and an

associated poloidal field of reverse polarity to the initial field. Eventually this new

poloidal field becomes dominant and the cycle reverses. Models based on these ideas

are Called kinematic, or • - e_ dynamos (e.g., Stix, 1981). However their basic as-

sumptions are not universally accepted and models called oscillator theories exist which

are based on the existence of a deep-seated, primordial field (e.g., Layzer et al., 1979).

These models are generally not as well developed, mathematically, as the kinematic

dynamos.

Obviously the period of the reversal of the polar fields contains information which

must be explained by any successful theory. In this study we examine new observations

relating to the evolution of the high latitude and polar magnetic field around solar

maximum to provide a firm observational context for the development of solar cycle

models. For this purpose we will derive the relative timing near the maxima of solar

cycles 20 and 21 of five specific events in each solar hemisphere. These are the peak

of the sunspot number, the magnetic polarity reversal above 70 ° latitude, the disappear-

ance of the polar crown of filaments, the first appearance of a small, mid-latitude coronal

hole(s) of new-cycle polarity, and the earliest coverage of the pole by a hole. It will be

shown that the data set allows each of these events to be determined within a few solar

rotations.

The data set emphasizes high spatial resolution synoptic coronal observations which

were not previously available. Coronal hole studies have shown an intimate spatial

relationship between coronal holes and large-scale unipolar areas; therefore, we expect

the development of high-latitude and polar coronal holes to provide insight into the

process of the polarity reversal of the polar fields. Sufficient synoptic data have now

been accumulated to permit the study of two consecutive cycles of polar hole develop-

ment around sunspot maximum.

Hundhausen et al. (198 l, hereafter HHH) and Broussard et al. (1978) have shown

that 'mid-latitude' holes (those centered at latitudes roughly between 20 and 60 °) were

a feature of the corona during the maximum of cycle 20. In Section 2 we describe the

high-latitude evolution of coronal holes around the maxima of cycles 20 and 21, and

show that one of the characteristics of this evolution was the areal increase and poleward

growth of particular mid-latitude holes of new-cycle polarity, to eventually cover the

poles. In Section 3 we describe the evolution of the high-latitude magnetic field using

observations of the migration of the polarity reversal of the photospheric field and of

the migration and dissolution of the polar crown. In Section 4 we summarize our results

with the goal of guiding the development of future models of the solar cycle.
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2. High-Latitude Coronal Hole Evolution around Sunspot Maximum

The coronal data used for this study included AS & E X-ray rocket images, tlarvard

OSO-6 Mgx maps for cycle 20, eclipse data on 7 March, 1970, synoptic High Altitude

Observatory (HAO) white light K-coronameter charts for cycle 20, and synoptic He 1

-10830 ,_ coronal hole boundaries for cycle 21. Various formats of H_ synoptic charts

from the NOAA Space Environment Laboratory were used to trace the poleward

migration of filaments and of the large-scale magnetic field. Graphs of the latitudinally

averaged photospheric field from Mt. Wilson were used to trace the poleward migration

of the polarity reversals at the times of maxima. In Figure 1, the times of the rocket and

OSO-6 data are superposed on the sunspot data for cycles 20 and 21 using smoothed

values of Rz, the ZOrich sunspot number, normalized to the starting minima of the

cycles in October 1964 and June 1976, respectively.
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Fig. 1. The rise, maxmlunl and early decline phases of solar sunspot cycles 20 (bottom curve) and 21 (top).

The curves show smoothed values of R:, the ZiJrich sunspot number, normalized to their starting minima

in October 1964 (bottom) and June 1976 (top). The dashed line represents predicted R: through late 1982

and early 1983. These data arc adapted from the Solar-Geophysical Data Bulletin. The vertical lines denote

the times of AS & E X-ray rocket flights (there were 2 in November 1979), and the arrows indicate the time

coverage of the Harvard OSO-6 Mgx movie.

The maximum of cycle 20 was broad, with shape and peak similar to the average

profile of the previous 12cycles. In contrast, cycle21 was the second most active

sunspot cycle in recorded history. Compared to cycle 20 it had a steeper rise and an

earlier and narrower peak. It is important to compare the patterns of evolution in the

polar regions for these two cycles, which have such different levels and distributions of
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magnetic activity. In this section we will examine the evolution of the high-latitude

coronal holes which lead to the reformation of the polar holes.

2.1. THE REDEVELOPMENT OF THE POLAR HOLES IN CYCLE 20

The structure of the corona during the maximum of cycle 20 was observed in 1969 with

the use of K-coronal observations (HHH) and EUV and soft X-ray images obtained

by rocket flights (Krieger etal., 1971, Figure 6; Broussard etal., 1978). The rocket

images corroborate the description given by HHH: that the corona was characterized

by the absence of polar holes and the presence of elongated mid-latitude holes. In

particular, the AS & E X-ray image on 4 November, 1969 (Carrington Rotation 1554)

showed that there was no polar coronal hole in the south. The magnetic field data

showed no dominant polarity at high latitudes until 1970.

For this cycle the exact time of reappearance of polar coronal holes is difficult to

determine because of the low resolution of the K-corona data and the infrequent rocket

X-ray images, as well as the cyclical tilting of the solar poles toward and away from our

line of sight. HHH noted that by mid- 1970 (CR 1561-63) dominance by a single polarity

had begun to appear in both hemispheres. The polarities (positive in the north, negative

in the south) were those expected for the new cycle following sunspot maximum.

Our interpretations of the timing of the coverage, or encirclement of the polar caps

by coronal holes from the K-coronameter maps differ from those of HHH. Using a more

conservative approach to the data, they claimed that the southern polar hole did not

appear until early 1971 (CR 1572). The earliest indication in the K-coronameter data

of a large coronal hole extension to the southern pole was in July 1970 (CR 1563). By

October (CR 1567) a coronal hole could be observed poleward of S 70 ° latitude at all

solar longitudes. Although there were gaps in the K-coronameter data during this period,

we believe that these data imply complete coverage of the polar cap by a hole at this

time. An unambiguous southern polar hole was visible on the AS & E X-ray image taken

on 24 November, 1970 (CR 1568) (Krieger et al., 1973). This asymmetric hole extended

to the equator at about L = 270 °, and could be traced as a continuous feature of the

corona back to July 1970.*

The critical period of late 1969 to mid-1970 was studied with the use of a cine

presentation of the corona obtained with the Harvard spectroheliograph on the OSO-6

satellite (Withbroe 1981; Withbroe et al., 1971), H0t synoptic charts (Mclntosh, 1979),

and coronal data obtained on 7 March, 1970, the date of a total solar eclipse at Earth.

The OSO-6 movie revealed the gradual development of three coronal holes which we

believe were the earliest indication of the new-cycle magnetic organization leading to the

formation of the southern polar hole. These holes appeared at mid-latitude and expand-

ed in longitude and toward the south until they reached the pole. All were of negative

polarity, in agreement with the subsequent polarity of the south pole.

* It was identified with the first long-lived, recurrent high speed wind stream following solar maximum

(Krieger et aL, 1973; Sheeley et al., 1977). The stream first appeared on August 1970 (CR 1564), in agree-

ment in time, polarity, and longitude with the southern coronal hole.
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The centroids of the holes were relatively stationary in longitude, with average

Carrington longitudes of 20, 110, and 220 °. The hole at L = 110 ° stretched across the

central meridian on the day of the 7 March, 1970 eclipse and, hence, was well observed.

It was bordered in the south by the polar crown of filaments prior to March 1970

(CR 1558), implying that the hole did not extend to the pole prior to that rotation. The

polar crown began to break up on CR 1558.

The eclipse data clarify these observations. Figure 2 is a superposition of the 7 March

AS & E X-ray image of the inner corona and the HAO ground-based image of the

white-light outer corona. The X-ray image revealed large areas of low emission, similar

in appearance to coronal holes, surrounding both poles. The solar B o angle, denoting

the tilt of the solar equator to the ecliptic, had its maximum negative value, exposing

the south pole to our view. Gaps in the X-ray limb emission at position angles of 180 °

and 215-240 ° (measured CCW from north) corresponded to gaps in the white-light

emission (Van Speybroeck et al., 1970; HHH). These corresponded to the small hole

near the south pole and the large hole at L = 220 ° observed by OSO-6. In X-rays the

region between these two 'accepted' holes contained similar low emission, suggesting

that there were no intervening bright arcades that would indicate changes of magnetic

polarity. Thus, the high southern latitudes appeared to be dominated by a single

polarity.*

Figure 3 shows the Ha synoptic map which includes the date of the eclipse (CR 1558).

The top map has superimposed on it the boundaries of the coronal holes carefully drawn

from the 7 March, 1970 X-ray image (Figure 2). Although the boundaries are subjective

(e.g., Kahler et al., 1983), our determinations are based on the use of film transparencies,

which reveal subtle contrast differences not visible on prints. The double dashed lines

mark regions where filament arcades may cause obscuration of the hole boundaries. The

bottom map shows the 2 and 3 x 10 - SpB K-coronameter contours from the west-limb

data of HHH. Comparison of these maps reveals that: (1) in the southern hemisphere

the 3 x 10-SpB contour lies within the negative polarity cell; (2)part of the southern

coronal hole visible on the X-ray image is of uniform darkness and its boundary

generally follows that of the 3 x 10- 8 contour; (3) the small positive-polarity hole near

the center of the X-ray disk (S 25, 135 ° L) is not visible in the white light data.

These observations suggest that by March 1970 the large-scale south polar field was

dominated by the polarity of the new cycle, with a small area of the south polar region

possibly covered by an asymmetric hole. The south polar region did not become

completely encircled by a hole until about October 1970.

The above comparison indicates that, at this time of the solar cycle, the 3 × 10- SpB

contour of the K-coronameter data may be a better approximation for the boundaries

of high latitude coronal holes. We believe that HHH's interpretation of the timing of

the reappearance of the polar holes was overly conservative. Their use of a single,

average contour (2 x 10-8) to define hole boundaries over the entire cycle and their

* We believe that the white-light helmet streamer lying at 180-215 _ had its base in the hidden hemisphere,

contrary to HHH's interpretation.
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Fig. 2. A superposition of an AS & E X-ray image of the inner corona obtained durin_ a rocket flight and

a ground-based HAO white light image of the outer corona. Both were taken daring the solar eclipse of

7 March, 1970. The X-ray image had passbands of 3-30 and 44-55 A.. The arrow indicates solar

north,
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Fig. 3. Coronal data superimposed on an H_ synoptic chart for CR 1558 (McIntosh, 1979). (a) Boundaries

of coronal holes drawn from the 7 March, 1970 X-ray image in Figure 2. The three vertical lines represent

the positions of the east limb (left), CMP (center) and west limb (right) on that day. Single dashed lines

indicate uncertain boundaries; double dashed lines indicate the locations of coronal filament cavities. The

' × 's mark the location of sunspots observed with the X-ray experiment, and provide a benchmark of the

accuracy of transfering the X-ray data to the rectangular format. (b)The 2 and 3 × 10 8 pB contours of

the white light K-corona adapted from the west limb synoptic data of HHH.
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definition of polar encirclement only when the pole appeared to be surrounded by a

uniform band of low emission separated from the 'equatorial corona by a steep bright-

ness gradient' yields estimates of polar hole rebirths which are, consistently, several

rotations later than our estimates of the earliest coverage. It is important to emphasize

that in our data set we seek the earliest time when we can be reasonably certain that

each pole is covered by a hole, no matter how small or asymmetric, and which will persist

in subsequent rotations. This time, or a window of times, will appear in Table I under

the column 'Earliest Polar Coverage by a Hole'.

HHH's conservative approach is understandable, given the limitations of the K-

coronameter data, which they discuss in detail. We note that these data are particularly

insensitive to the detection of small coronal holes and cannot give accurate locations

of the boundaries of large holes, especially those obscured by brighter structures in the

line of sight. These problems are more severe near the poles at solar maximum where

the pB signal contains a large contribution due to numerous bright structures in the
mid-latitudes.

The evolution of the high-latitude holes in the northern hemisphere followed a similar,

but more complicated pattern. HHH noted that redevelopment of the north polar hole

occurred in a manner similar to that in the south. A small positive-polarity (new-cycle)

hole developed at mid-latitudes and expanded towards the pole to eventually cover it;

however, this process lagged that of the south and took longer. The delay in establishing

a persistent polar hole was apparently related to an anomalous 'wave' of poleward-

moving flux which caused the north pole to reverse its polarity twice more after the initial

reversal (e.g., Waldmeier, 1973).

Our independent interpretation of the K-coronameter data indicates that north polar

coverage by a hole occurred 1 to 2 rotations earlier than HHH's suggestion (i.e.

CR 1572-73 rather than 1574). This event was preceded by the growth of a high-

latitude, positive-polarity hole which developed on or before CR 1561 (May 1970).

HHH thought this hole disappeared then reappeared between CR 1567 and 1570, but

we believe that the hole only fluctuated in area, possibly because of a surge of negative

flux which swept through the northern mid-latitudes (Howard and LaBonte, 1981). The

X-ray image for 7 March, 1970 (Figures 2 and 3) revealed low emission over the north

pole although that pole was tilted away from our view. Bright arcades overlying the

broken polar crown at N 50-60 ° likely obscured the north pole in the K-corona data.

2.2. THE REDEVELOPMENT OF THE POLAR HOLES IN CYCLE 21

The study of the birth and evolution of coronal holes in the present solar cycle is

improved because of the availability of continuous synoptic HeI-10830 A data from

KPNO. Advantages to the 10830 _, data are their high spatial resolution and the

minimal obscuration of hole boundaries due to overlying structures. Disadvantages

include a poor understanding of the close correspondence between He l absorption and

hot coronal material (Kahler et aL, 1983), and limb darkening in coronal holes (Harvey

and Sheeley, 1977). Additional data available included AS & E X-ray rocket images

obtained at the maximum and early decline of the solar cycle (as marked in Figure 1)
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Fig. 4. Top:AS & E X-ray rocket images ofthe corona obtained on 7 November. 1979(a)and 13 February,

1981 (c). The passbands of the images were 8 -_ 100 A and 8-39, 44-64 A, respectively. Bottom: Tracings

on Stonyhurst disks of the boundaries of the darkest areas on the 7 November, 1979 (b) and 13 February,

1981 (d) X-ray images. Dashed lines indicate less well defined boundaries. Also shown are the principal

(solid lines) neutral lines and filaments transfered from the synoptic charts for CR 1688 and 1705.

and a complete atlas of Hot synoptic charts with 10830 ,_,coronal holes superimposed.
Figure 4 presents the AS & E X-ray images obtained on 7 November, 1979 (a), near

solar maximum, and on 13 February, 1981 (c), 14 months after maximum. These images

had similar sensitivities at the film plane and covered similar solar longitudes

(CMP -_ 300 _ k for both images). At the bottom of the figure are tracings of the

,_,._; _t'_-,'iic t_ .,-:''-r ,r_l 4
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boundaries of the darkest areas on the X-ray images, and tracings from He synoptic

charts for CR 1688 and 1705 of the definite (solid) neutral lines and filaments which were

located near the dark X-ray features. Since neutral lines tend to border coronal holes

and lie within coronal cavities (e.g., Mclntosh et al., 1976), they help us to separate these

two types of dark X-ray features. Again, we used high contrast transparencies to make

the X-ray drawings. We believe that the low contrast of the solar corona near maximum

is physically real (Kahler et al., 1983).

No polar holes are evident on the 7 November, 1979 image, nor on another X-ray

rocket image obtained on 16 November, 1979. Together these images provided coverage

of approximately 2/3 of the solar disk near solar maximum. The dark lanes near the poles

corresponded to polar crown or high-latitude filament channels. A small hole may have

appeared near the south pole on 16 November, but it was probably of negative polarity,

i.e., indicative of old-cycle flux. SmaII mid- and high-latitude coronal holes appeared on

both images. We conclude that the overall appearance of the low corona at the maximum

ofcycle 21 was similar to that of cycle 20. Examination of the X-ray images and the H_

charts showed that there were small mid-latitude holes but no conspicuous polar holes,

and no large-scale organization of 'new-cycle' polarity at high latitudes.

By February 1981, early in the decline of cycle 21, the X-ray image revealed a large,

asymmetric coronal hole extending to near the south pole. The solar south pole was

visible on the disk just as in March 1970. A coronal hole may have been present near

the north pole, but this is uncertain because that pole was tilted away from Earth.

Spectroheliograms taken in the He l - 10830/_ line have been obtained daily at the

KPNO since mid-1974 and have been used to map the boundaries of the coronal holes

onto He synoptic charts, which places the coronal holes in context with the patterns

of large-scale solar magnetic fields, active regions and filaments. The accuracy of this

mapping depends on observer bias in determining the hole boundary from daily images,

day to day contrast variations between the hole and its surroundings, and the transfer

of the data to a rectangular grid. As is the case for the He data, subjective variations

in the mapping are minimized by only mapping features which persist from day to day.

We have assumed that for our study of large-scale evolutionary patterns the location

of hole boundaries, mapped in this way, is sutt]ciently reliable. This assumption is

supported by the observation of consistent and persistent patterns on the charts from

one rotation to another.

The visibility of coronal holes in 10830 _ is a separate question. Kahler et al. (1983)

have recently reviewed the comparisons of coronal holes seen in 10830 _, with

Hell - 304 ,_, and soft X-ray images. They compared six AS & E rocket X-ray images

with 10830 ,_ images and found good agreement between the boundaries of large holes

but poor agreement for mid- and low-latitude small holes, which were of low contrast,

from 1976 to 1981. Limb darkening in coronal holes is also more pronounced in the

10830 ._, line (Harvey and Sheeley, 1977). Combined with foreshortening and the

variation of the solar B o angle, these factors somewhat compromise the use of the

10830 _, data for detecting polar holes. However, although the boundaries of high-

latitude holes are uncertain, the existence and large-scale evolution of these holes are
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well observed in the synoptic data. Also, Fisher (1982) has shown that around solar

maximum 10830/_, coronal holes of sufficient size and lifetime were always detected by

the HAO M-Ill K-coronameter.

The relationships between coronal holes and the large-scale magnetic field patterns

displayed on the H_ synoptic charts have been examined by Mclntosh et al. (1976) and

Bohlin and Sheeley (1978). Coronal holes consistently lie near the center of unipolar

magnetic areas whose dimensions usually exceed 30 heliographic degrees. The hole

boundaries generally parallel the paths of adjacent neutral lines, with a constant separ-

ation between hole and neutral line. The shapes of coronal holes, therefore, mimic the

forms of the surrounding magnetic cells as bounded by the H_ neutral lines.

These relationships can be illustrated using charts where the areas of negative polarity

are shaded dark, and coronal holes are crosshatched. The relationships are temporal

as well as spatial, so a time series of charts, made by dividing the shaded synoptic charts

into narrow zones of latitude and then assembling the zones in time series (Mclntosh,

1980, 1981), is used. Figure 5 displays the zone for the southern high latitudes (south

at the bottom) for the period encompassing solar cycle maximum, the polar polarity

reversal and early decline of the solar cycle (May 1979-April 1982; CR 1682-1720).

Although these zones extend only to 70 ° latitude, the original H_ synoptic charts and

daily 10830 _, images were used to confirm the boundaries of coronal holes above 70 °

latitude.

During the period shown in Figure 5a, a high-latitude, negative-polarity (black) coro-

nal hole disappeared about the time of sunspot maximum. This hole was within a polar

crown gap (PCG - Mclntosh, 1980), seen as a dark diagonal sloping to the left with

time. The PCG closed rapidly in late 1979 during the apparent deceleration of the

positive-polarity (white) area to the west (right) and the demise of the coronal hole.

These observations mimic those of cycle 20, when the closure of the PCG occurred

exactly 11 years earlier, in late 1968 (Mclntosh, 1980).

After this time the south polar region gradually became dominated by positive,

new-cycle polarity. The reversal of polarity in the polar regions evidenced by the

movement of the polar crown beyond the lower border (S 70) of this zone by CR 1701

(Figure 5b), followed the closure of the PCG by at least six months.

The first persistent mid-latitude coronal hole appeared on CR 1695. Figure 5b shows

that this hole formed near the center of a growing positive-polarity area which encircled

the Sun by early 1981. The hole grew in size and expanded poleward until it dominated

the polar region by mid-1981 (after CR 1710, Figure 5c).

This episode was followed by a poleward surge of negative polarity flux from CR 1709

to 1722 which coincided with a large reduction in the high latitude hole area. The surge

is seen as increased black polarity at high latitudes in Figure 5c and as a prolonged

negative downturn in the magnetic field averages at mid- to high-latitudes (Section 3.1).

This surge began at lower latitudes, progressed poleward and was contemporary with

the development of a second mid-latitude hole on about CR 1714 at L260 °. Like the

first such hole, this hole grew in size and expanded poleward until it connected to the

first coronal hole at the pole on CR 1721.
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The time when the south pole became covered by a coronal hole is uncertain because

of the changing solar Bo angle and the reduction of the high latitude hole area through

late 1981 and 1982. By CR 1717, when the B o angle was favorable, the pole appeared

to be covered over all longitudes to a latitude of at least S 80°.

The evolutionary process in the northern hemisphere during solar cycle 21 was

similar to that in the south, but more complicated, just as in the previous solar cycle.

Figure 6 displays the northern high-latitude zone (north at the top) for the same period

as Figure 5. The PCG is white (positive-polarity) and closed rapidly from CR 1687 to

1689, identical with the time of closure of the southern PCG. The polar crown is the

upper border of the large black (negative-polarity) area centered within the zone for

CR 1682 at the top of Figure 6a. The movement of the polar crown past the N 70 border
occurred by CR 1695, two rotations earlier than the southern polar crown.

By CR 1690 the northern hemisphere was encircled at high latitudes by negative

(new-cycle) polarity flux. Within this belt the first persistent mid-latitude hole formed

on CR 1690, very soon after the PCG closure and five rotations earlier than for the

southern hemisphere. A second, persistent, mid-latitude hole formed on CR 1695 at

130 ° L. The first failed to grow and did not move to the pole. The second hole expanded

rapidly on CR 1697 (Figure 6b) both toward the pole (top) and toward the equator. It

extended beyond N 70 by CR 1699. Its lower-latitude portion could be identified contin-

uously through CR 1719 (March 1982).

By CR 1712 the pole appeared completely covered by a hole. But in the interval

CR 1700-1712 the situation was confused, probably because of another poleward surge

of flux. This surge occurred from about CR 1708 to 1714 and is seen as increased white

(positive) polarity at high latitudes (Figure 6b, c) and as a positive poleward-moving

peak in the magnetic field averages (Figure 7). The earliest time of coronal hole coverage

of the north pole was as much as a year earlier than for the southern hemisphere. This

time was better established than for the south because the coverage of the pole occurred

during the time when the solar Bo angle favored viewing of the north pole.

3. The Polar Magnetic Field Evolution Around Maximum

There are two other specific observational tracers of the evolutionary pattern of the

magnetic flux that can be related to polar hole evolution near sunspot maximum. They

are the dependence of the time of reversal of the long-term average photospheric field

strength as a function of latitude, and the evolution of the polar crown of filaments.

3.1. THE MAGNETIC POLARITY REVERSAL

The most detailed discussion of the polar polarity reversal during cycle 20 was given by

Howard (1972, 1974). Using Mt. Wilson magnetograph data, he observed successive

reversals of the sign of the field to the new-cycle polarity starting at 40-50 ° latitude and

proceeding to the pole. The time for this 'migration' was 1 to 11 yr and similar patterns

were observed at both poles, although not in phase. The reversal occurred at least

11 rotations earlier in the south than in the north, in agreement with the pattern of the

development of the high-latitude and polar coronal holes.
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Fig. 7a-b. The variation of the southern (a) and northern (b) photospheric magnetic field strength
averaged over six latitude intervals from 1978 through October 1982. The zero level is drawn for each
latitude interval. The field averages are 27-day running means. The large excursions in the data above 70 °
are related to data gaps and instrument recalibrations at times when the respective poles had their maximum

tilt away from the Earth. These data are from Mt. Wilson Observatory, courtesy of R. Howard.
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R. Howard has kindly provided Figures 7a, b, which are plots of the north and south

photospheric field, respectively, averaged over six latitude intervals from 1978 to 1982.

We can see that a long-term reversal to new-cycle polarity (negative in the north, positive

in the south) occurred above latitudes 70 ° around March 1980 in the north and about

6 months later in the south, although the data contain significant fluctuations and the

zero level is uncertain. Because the polemost latitude band that the magnetograph

samples is large, these measurements underestimate the time of reversal at the pole.

However, the poleward reversal 'wave' moves so rapidly in each hemisphere that the

actual polar reversal is anticipated by, at most, 1-2 rotations. (A tendency for earlier

reversal at successively lower latitudes is also apparent.)

As mentioned earlier, the timing of the reversals in cycle 21 was complicated by

apparent poleward movement of old-cycle polarity flux in both hemispheres. This

occurred i:arlier and was more clearly delineated in the north. The northern surge also

produced a clear but temporary positive shift in the long-term, increasingly negative

polar field (Figure 7b, mid-1981). However, the effect of this shift in the polar field was

very weak and the second 'reversal' was out-of-phase with the timing of the other tracers.

Therefore, although in Table I we have listed two times when the northern field above

70 ° reversed polarity from positive to negative, we conclude that the earliest reversal

was the 'true' one.

The southern surge did not appear to be strong enough to reestablish negative flux

above 70 ° S, so we list only one reversal time for the southern hemisphere.

Table I list the times of the sunspot peak in each hemisphere (column 3) and the times

of polarity reversals above latitudes 70 o (column 4), both for cycles 20 and 21. It follows

from dynamo models that the differences in the time of the polarity reversal for the two

poles should depend on the differences in flux production in the two hemispheres. A

crude, but commonly used measure of the amount of flux appearing on the solar surface

is the sunspot number, which has been plotted separately for each hemisphere by White

and Trotter (1977) through cycle 20. Such segregated counts were not available for the

present cycle, so we used counts of the number of SESC regions (active regions assigned

a serial number by NOAA Space Environment Services Center) occurring in each

hemisphere during cycle 21. This estimate was made from the weekly NOAA Prelirnina-

ry Report and Forecast of Solar-Geophysical Activity, without resorting to counting the

number of groups on individual sunspot drawings. More regions formed in the northern

hemisphere throughout the rising portion of the solar cycle. The northern hemisphere

strongly dominated during the 6 months just prior to sunspot maximum. The southern

hemisphere then dominated for the six months ending in August 1980. The lag time and

the order of dominance between the two hemisphere mimicked that between reversals

of the northern and southern poles for the last two cycles, suggesting that the amount

of flux generated in each solar hemisphere determines the order and timing of the polar

magnetic field reversal.

We see that in cycle 20 the south pole reversed at least _ of a year before the north,

and in cycle 21 the north pole reversed first, about ½a year before the south. For both

cycles the general pattern of development of new-cycle polarity coronal holes followed



OBSERVATIONS OF THE REAPPEARANCE OF POLAR CORONAL HOLES 127

these reversals in this same sequence. These observations are therefore consistent with

our expectation for the general evolution of the polar field following sunspot maximum,

as set forth in the Introduction. For completeness we have included in Table I Babcock's

(1959) estimate of the time of reversal during cycle 19, when the south reversed about

1½yr before the north.

3.2. THE DISAPPEARANCE OF THE POLAR CROWN

The final observational parameter that must be accounted for in models of the solar cycle

is the poleward migration of the polar crown of filaments (e.g., Leighton, 1964). After

sunspot minimum filaments in the mid-latitudes begin to move toward their respective

poles. The locus of filaments maintains a nearly constant distance of 20 ° from the

boundary of the shrinking polar hole (Waldmeier, 1981); in fact the coronal arcades

overlying the filaments form the physical boundary" of the polar hole (Mclntosh et al.,

1976). For the past several cycles the reappearance of the polar holes has occurred close

to the time of arrival near the pole, and disappearance, of the polar crown (Waldmeier,

1981).

We have determined the time of disappearance of the polar crowns for cycles 20 and

21 through the use of H a synoptic charts (Mclntosh, 1979; Solar Geophysical Data) and

high-latitude zonal diagrams derived from the Ha charts (like Figures 5 and 6). This

method permits us to observe the systematic motions of features on the maps. Inte-

gration of daily measurements of filaments at latitudes higher than 60 ° minimizes the

uncertainties in the position of the polar crown.

U sing mean values of the latitude distribution of prominence areas, Waldmeier ( 1973)

was able to determine the poleward migration rate and time of arrival at the pole of the

polar crown for cycle 20. Using the He synoptic charts, we have developed similar

curves for cycles 20 and 21 which show the maximum latitude reached by the polar

crown on each solar rotation. The times of polar crown disappearance listed in column 6

of Table I were determined to be the rotation on which the last conspicuous polar crown

filament was observed.* The disappearance times for cycle 19 were estimated from

Waldmeier's (1981) Figure 5.

4. Summary and Discussion

4.1. SUMMARY OF RESULTS

We will now attempt to synthesize these observations in order to learn more about the

polar evolution of the solar magnetic field. Several caveats are required for the interpre-

tation of these data: (1) Like other solar synoptic observations, the data are noisy and

* From Waldmeier's (1973) data on the evolution of the northern polar crown in cycle 20 one would infer
an earlier disappearance time than ours. This is because his 'anomalous' polar crown (also referred to by
Howard, 1974) was not the final one. Following the passage of the "anomalous' front the polar field was of
negative polarity. It then switched to the new-cycle (positive) polarity after the passage of the final polar
crown.
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best used to discern longer term trends. This is especially true of the polar observations

which are effected by foreshortening and the tilt of the solar axis with regard to the

ecliptic. (2) As noted by Howard (1974) the timing of the magnetic polarity reversal is

uncertain, requiring several years of data around solar maximum to ascertain its actual

occurrence. (3) Coronal hole boundaries were determined from different sets of data in

cycles 20 and 21. In cycle 20 we used higher altitude K-coronameter, X-ray and EUV

data and in cycle 21 we used primarily lower altitude He 1-10830 ,_ data. The detailed

intercomparison ofhole boundaries determined at these different wavelengths is not well

understood, but knowledge of the general location and evolution of the larger holes

should be sufficiently accurate for our purposes. (4)Because of these limitations we

estimate that the uncertainties in the timings of Tables I and lI are of the order + 2
rotations.

First we summarize the high-latitude magnetic evolution near the maxima of the last

two cycles. In cycle 20 the polar polarity reversal and polar hole redevelopment occurred

first in the south. Mid-latitude holes developed in late-1969 and evolved into three holes

which joined at the south pole in mid-1970. The polar crown disappeared in the spring

of 1970. This process took longer in the north, lagged that of the south and was more

complicated. A persistent, mid-latitude hole did not appear in the north until mid-1970,

following by half a year the development of such a hole in the south. The polar hole

redeveloped in the spring of 1971. In both hemispheres, polar hole development lagged

the appearance of the mid-latitude holes by about one year. In cycle 21 a similar pattern

was followed except that all of the key events, including the peak of flux emergence,

occurred first in the north. The northern polar hole redeveloped in mid-1981 and the

southern in late 1981. These holes lagged the appearance of persistent mid-latitude holes

of new-cycle polarity by 1-2 yr. The magnetic reversal process in the north proceeded

that of the south by about 6 months, as did the polar crown disappearance. In each

hemisphere the complete coverage of the pole by a hole was delayed by poleward surges

of late-emergent flux.

These observations can be organized by relating the timing of the key high latitude

events to the polarity reversals. Table II is adapted from Table I and shows the lag times

in Carrington rotations from the time of the earliest indication of the polarity reversal

TABLE I1

Lag times from polar polarity reversal (Carrington rotations)

Cycle Pole Mid-latitude Polar crown Polar hole

No. hole appearance disappearance encirclement

21 N -3 to +3 +(8 to 9) +(18 to 20)

21 S -4 +8 +(11 to 17)

20 N _> + 1 +9 +(11 to 15)

20 S >(-2 to +7) + 13 +(9 to t0)

19 S - + (20 to 25) -

19 N - + 12 -
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above 70 ° in each hemisphere to the time of the following events: the development of

the mid-latitude hole of new-cycle polarity, the disappearance of the last conspicuous

polar crown filament, and the earliest coverage of the pole by a hole. We summarize

these results as follows: In each hemisphere the peak of the flux emergence (in terms

of sunspot number), the appearance of the mid-latitude hole(s), and the polarity reversal

at the pole all occurred within a few months of each other. This is particularly true if

we compare the time of the earliest indication of the polar reversal and the earliest birth

of a mid-latitude hole. The polar crown disappearance and the redevelopment of the

polar hole occurred between 8 months and 1½yr after the polar reversal. Polar hole

coverage occurred at or after the time of polar crown disappearance in both cycles,

lagging by about one year in both hemispheres in cycle 21.

4.2 DISCUSSION

We have examined the observations relating to the evolution of the high-latitude solar

magnetic field around sunspot maximum, when the net polar flux switches polarity and

coronal holes redevelop around the poles. We now integrate our results with the

phenomenological concepts of coronal hole evolution near maximum mentioned in the

Introduction. Before activity maximum, flux in the form of BMRs emerges at mid-lati-

tudes. The trailing part of this flux, of opposite polarity to that of the old cycle at the

poles, moves toward the poles, canceling the unipolar field there and reducing or

eliminating the area of the pole occupied by a coronal hole. Near sunspot maximum a

sufficient amount of trailing polarity flux has arrived at the poles to switch the polarity

of the net flux, although a large amount of mixed polarity remains. In the mid-latitudes

at this same time the field has reversed and the unipolar area of trailing polarity field

is sufficiently large for small holes to form. After maximum, as the amount of new flux

brought to the surface begins to decline, large unipolar areas of new-cycle (following)

polarity begin to dominate the mid- to high-latitude region. In two or three longitude

zones the small holes begin to enlarge. Although they can spread very rapidly, for a

period of time they are prevented from encircling the Sun at high latitudes because of

residual flux emergence and poleward flows of net old-cycle flux. The unipolar cells and

the holes within them persist and grow larger until they join at high latitudes to cover

the pole. At about this time the polar crown, which is supposed to form the boundary

between the old-cycle (or mixed) polarity of the pole and the new-cycle, high-latitude

polarity, begins to break up and disappear as it nears the pole. Although the develop-

ment time of the new-cycle, high-latitude holes for these two cycles varied from 6 months

to 1½yr, the appearance of the polar hole occurred within several rotations of the

disappearance of the polar crown in both cycles.

A major goal of our study is to provide a firmer observational context for the

development of models of the solar cycle. Toward this end we comment below on the

following results of our analysis which we believe must be taken into account in future

models of the solar cycle.

First, the process of polarity reversal accompanying the redevelopment of the polar



130 D. F. WEBB ET AL.

holes is not a smooth process that sweeps the trailing flux from the emerging flux belts

to the pole. Instead it is discontinuous, occurring in equaUy-spaced longitude bands.

These patterns are apparent in the zonal charts (Figures 5 and 6) as diagonals formed

by the large-scale magnetic cells and the coronal holes within them. The slopes of these

diagonals indicate the rate of rotation of the features relative to the Carrington rate.

These rates suggest a slowing of the large-scale features around the time of the cycle 21

polarity reversal, similar to that found for cycle 20 (McIntosh, 1980).

These patterns are reflected in all of the magnetic tracers that we have examined; i.e.,

coronal holes, latitudinally averaged photospheric magnetic fields, and the polar crown.

This process is perhaps best seen in the coronal hole evolution. Small mid-latitude holes

form when the magnetic cells at that latitude become large enough. Eventually one or

more of them continues to grow in area and to move poleward until a segment reaches

the pole. This latter process yields the large, asymmetric, high-latitude holes discussed

earlier and found to be typical of high-latitude holes soon after maximum. The ultimate

development of a symmetrical polar hole does not occur until a second poleward thrust

of unipolar new-cycle field, as evidenced by the growth of a second magnetic cell and

mid-latitude hole. This second hole develops at a longitude 180 ° from the first, and lags

the first by 5-10 rotations. The observed poleward movement of the old-cycle field

(Figure 7), after the early polar reversal and mid-latitude hole appearance, tends to

disrupt the growth of new-cycle field, to maintain the asymmetry of the high-latitude

holes, and to diminish the hole area. If the surge reaches the polar zone, the polar crown

will be reestablished in that longitude band. This yields the kind of 'anomalous' polar

crown first reported by Waldmeier (1973) in the north in cycle 20.

There is a persistent asymmetry between the two solar hemispheres in the timing of

the processes discussed above. For instance, in any given cycle the magnetic polarity

reversal between hemispheres is offset by 6 months to 1½yr. Our results have confirmed

such an asymmetry for the present cycle and indicate that the polar crown and high-lati-

tude coronal hole evolution also follow this pattern for cycles 20 and 21 (Table I). Our

sunspot group data for cycle 21 and the extensive sunspot number data of White and

Trotter (1977) suggest that such an asymmetry is a characteristic of the maximum of

the solar cycle.

Our second result concerns the relationship between the polar field reversal and the

polar crown disapearance. The polar crown is hypothesized to form the boundary

between the poleward-receding old-cycle flux and the advancing new-cycle flux. If this

idea were correct, then we could use the time of disappearance of the polar crown to

infer the time of polarity reversal at the pole. We can predict that this inferred time

should be approximately the same as that implied by magnetograph polarity measure-

ments. If the strongest new-cycle field lay 15-20 ° equatorward of the polar filaments,

we might expect the measured reversal to lag the inferred reversal by several rotations.

Howard (1974) first noted that for cycle 20 this relationship was not as good as

expected. We have found that, for the last two cycles, the opposite actually occurred;

i.e., the polar crown consistently disappeared 6 months to 1 year after the magnetic polar
reversal.

w
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It is possible to explain this sequence in terms of the presence of the poloidal field

of the new cycle, which, in _ - o_ dynamo models, is generated by the toroidal current

associated with the toroidal field component. The poloidal field, although essential to

the regeneration of the dynamo, is much weaker than the toroidal field and would

therefore be difficult to observe. In fact, doubt has been cast on its existence and

subsequently used as argument against the _- _ mechanism (Layzer et al., 1979).

However, at the time of the polar field reversal, the toroidal components of the old and

new cycle flux might be expected to cancel, thus allowing the poloidal field to be

observed. Our observations suggest the following scenario: With the appearance of

new-cycle flux at mid-latitudes, the quantity of old-cycle flux migrating poleward will

gradually diminish. If a point in time is reached, before the new-cycle flux reaches the

polar zone, when the polar zone flux from the old cycle falls below the level of the

poloidal component arising from the new cycle, a reversal in the measured average field

strength in the polar zone would occur. Thus the apparent contradiction in the observa-

tions would be removed; the polar crown would still form the boundary between the

toroidal fields of the old and new cycle. As the new cycle builds and its flux migrates

poleward, the polar crown will dissipate and the toroidal component will again dominate

the field measurements. If this interpretation is correct, it provides the first evidence for

the existence of a reversing poloidal field component which is critical for kinematic

models of the solar dynamo.

Finally, our observations appear to support recent studies of the magnetic field

(Howard and LaBonte, 1981)and polar filaments (Topka etal., 1982)which suggest

that there is a poleward meridional flow averaging about 10 m s - _. These authors have

interpreted this flow as the result of a large-scale poleward circulation that cannot be

accounted for by Leighton (1964) - type diffusion. In the Mr. Wilson data the strongest

flows originated in the sunspot belts near solar maximum and moved to the poles in

2-3 yr. We see apparent poleward flows of this magnitude in our data at high latitudes

near maximum. For instance, in the south in cycle 21 the polarity reversal wave and the

subsequent surge of old-cycle flux moved poleward at about 13 m s - i. We estimate that

the poleward movement of the high-latitude coronal holes was about 10-15 m s- 1, but

with a large uncertainty due to the difficulty of measuring the coronal hole boundaries

at high latitudes.

We can ask if we see any differences in the timing of these events that can be

understood in terms of the different levels and distributions of magnetic activity between

the last two cycles. Interestingly, the answer is generally no. The polarity reversal

occurred first in the south for two consecutive cycles (19 and 20), then in the north in

this cycle. A persistent phase lag between hemispheres of 6 months to 1 year was

observed. In accordance with the more rapid rate of flux emergence, the polar reversals

occurred faster in cycle 21 than cycle 20. On the other hand, the timing of the develop-

ment of the high-latitude, new-cycle field and the polar crown migration and disappear-

ance were similar during these two cycles. Polar hole coverage appeared to be retarded

in cycle 21. This latter result could be due to the increased amount of total flux

emergence in cycle 21 and the subsequent disruption in the development of the high-lati-
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tude unipolar fields from poleward movement of old-cycle flux. In conclusion, there

seems to be no strong correlation between the levels of solar cycle-dependent magnetic

activity and the timing of events around the time of the polar polarity reversal.

Acknowledgements

The authors would like to thank R. Howard, of the Mt. Wilson and Las Campanas

Observatories, for providing the magnetograph data and A. Krieger for helpful dis-

cussions. We thank the AS & E and NOAA technical publication groups for their

assistance with the figures. DFW and JMD were supported at AS & E by NASA

Contracts NAS5-25496 and NASW-3586.

References

Babcock, H. D.: 1959, Astrophys. J. 130, 364.

Babcock, H. D.: 1961, Astrophys. J. 133, 572.

Bohlin, J. D. and Sheeley, N. R., Jr.: 1978, Solar Phys. 56, 125.

Broussar, R. M., Sheeley, N. R., Jr., Tousey, R., and Underwood, J. H.: 1978, Solar Phys. 56, 161.

Fisher, R. R.: 1982, Astrophys. J. 259, 431.

Harvey, J. W. and Sheeley, N. R., Jr.: 1977, Solar Phys. 54, 343.

Howard, R.: 1972, Solar Phys. 25, 5.

Howard, R.: 1974, Solar Phys. 38, 283.

Howard. R. and LaBonte. B. J.: 1981. Solar Phys. 74, 131.

Hundhausen, A. J.: 1977, in J. Zirker (ed.), CoronalHoles and High-Speed Wind Streams, Colorado Associat-

ed Univ. Press, Boulder, Colorado, p. 225.

Hundhausen, A. J., Hansen, R. T., and Hansen, S. F.: 1981, J. Geophys. Rev. 86, 2079.

Kahler, S. W., Davis, J. M., and Harvey, J. W.: 1983, Solar Phys. 87, 47.

Krieger, A. S., Vaiana, G. S., and van Speybroeck, L. P.: 1971, in R. Howard (ed.), Solar Magnetic Fields,

D. Reidel Publ. Co., Dordrecht, Holland, p. 397.

Krieger, A. S., Timothy, A. F., and Roelof, E. G.: 1973, Solar Phys. 29, 505.

Layzer, D., Rosner, R., and Doyle, H. T.: 1979, Astrophys. J. 229, 1126.

Leighton, R. B.: 1964, Astrophys. J. 1411, 1547.

Mclntosh, P. S.: 1979, UAG Report 70, World Data Center A for Solar-Terrestrial Physics, NOAA,

Boulder, Colorado.

Mclntosh, P. S.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), Solar and Interplanetary Dynamics, D.

Reidel Publ. Co., Dordrecht, Holland, p. 25.

Mclntosh, P. S.: 1981, in L. E. Cram and J. H. Thomas (eds.), The Physics of Sunspots, Sacramento Peak

National Observatory, Sunspot, New Mexico, p. 7.

Mclntosh, P. S., Krieger, A. S., Nolte, J. T., and Vaiana, G.: 1976, Solar Phys. 49, 57.

Nolte, J. T., Davis, J. M., Gerassimenko, M., Lazarus, A. J., and Sullivan, J. D.: 1977, Geophys. Res. Letters

4, 291.

Sheeley, N. R., Jr.: 1980, Solar Phys. 65, 229.

Sheeley, N. R., Jr., Asbridge, J. R., Bame, S. L, and Harvey, J. W.: 1977, Solar Phys. 52, 1977.

Solar Geophysical Data Bulletins: U.S. Department of Commerce, NOAA, Boulder, Colorado.

Stix, M.: 1981, Solar Phys. 74, 79.

Topka, K., Moore, R., LaBonte, B. J., and Howard, R.: 1982, Solar Phys. 79, 231.

Van Speybroeck, L. P., Krieger, A. S., and Vaiana, G. S.: 1970, Nature 227, 818.

Waldmeier, M.: 1973, Solar Phys. 28, 389.

Waldmeier, M.: 1981, Solar Phys. 70, 251.

White, O. R and Trotter, D. E.: 1977, Astrophvs. J. Suppl. 33, 391.

Withbroe, G. L.: 1981, private communication of 16-mm OSO-6 movie.

Withbroe, G. L., Dupree, A. K., Goldberg, L., Huber, M. C. E., Noyes, R. W., Parkinson, W. H., and Reeves,

E. M.: 1971, Solar Phys. 21,272.



4.11 The Detection of Soft X-Rays with Charged Coupled Detectors

P. Burstein and J.M. Davis

American Science and Engineering, Inc.

Cambridge, Massachusetts 02139

ORiG_'_iAL FAGE iS

OF POOR QUALITY

W

4-142





N90-10798

19. The Detection of Soft X-Rays with

Charged Coupled Detectors

P. Burstein and J. M. Davis

American Science and Engineering, inc., Fort Washington
Cambridge, MA 02139, USA

m

The characteristics of an ideal soft x-ray imaging detector are enumerated.
Of recent technical developments the CCD or charge coupled device goes
furthest to meeting these requlrements. Several properties of CCDs are de-
scribed with reference to experimental work and their application to practi-
cal instruments is reviewed.

19.1 Introduction

The development of soft x-ray sensitive, electronic imaging detectors for
scientific applications is a major concern of laboratories worldwide. In
contrast to purely imaging applications scientific observations require
quantitative, intensity and position information from the image. Therefore
the characteristics of an ideal detector must include:

(i) A spatial resolution comparable to photographic film which implies a

format with a larg_ number of picture elements. In this case a large number
is of the order 10_ to 107 .

(2) A high sensitivity, to achieve the efficient detection of single,
incident photons, to minimize the degradation caused by system noise and to
provide high temporal resolution.

(3) A stable transfer function between input and output in order to
achieve a photometric accuracy of i%.

(4) Broad spectral response, or quantum efficiency, covering the energy

range from 0.2 to 20 keV coupled with energy resolution for single photons
over the same range.

The search for a single detector which completely satisfies all these

conditions has been largely unsuccessful. It has included imaging proportio-
nal counters [19.1], which combine very large areas, good energy resolution,
but only moderate spatial resolution, microchannel plates with a variety of

readout systems which have large areas, good spatial resolution but extreme-
ly limited energy resolution [i9.2,3], and more recently and quite promi-
singly charge coupled devices or CCDs.

In the following paragraphs the properties of CCDs as they apply to soft

x-ray detection and their application to scientific investigations is dis-
cussed.

19.2 Properties of Charge Coupled Devices

CCDs are closely spaced, two-dimensional arrays of MOS capacitors which are

laid down on a silicon substrate, shown schematically in Fig.19.1. The capa-
citors are electrically isolated from each other by the p- and n-type archi-
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Fig. 19.1 Functional description of
a typical three-phase CCD architec-
ture il|ustrating front and back
illumination, taken from MELEN and
BUSS [19.7]

tecture of the device and by the applied voltages. A photosite, or picture
element (pixel), consists of a set of three adjacent capacitors grouped in
the columns of the array. The electrodes of the capacitors are independently
controlled by "clock" or "gate" voltages. Because of this arrangement this
type of CCD is known as a three-phase device.

When an incident x ray is absorbed in the silicon substrate it excites

electrons into the conduction band which then diffuse into a depletion layer
formed by the positive voltages applied to the electrodes. These applied
voltages form a potential well which traps charge at a particular photosite.
To read out the device the applied voltages are changed, Dr clocked, so that
the charge at each photosite along a row is transferred vertically to the
adjacent site in its column. The charges in the row formed by the lowest
site in each column are transferred into a shift register where they are
read out serially following on-chip amplification.

The key to the operation of the CCD as an x-ray detector is the use of
the interaction site as the storage site. It can be thought of as an array
of solid-state detectors each with its own memory for the CCD can accept
photons over its entire surface simultaneously.

In "conventional x-ray detection" by the CCD [19.4,5] the detector is
used exactly as for visible light detection, as a total energy detector. The
output of a particular pixel is a charge which is proportional to the total
amount of energy deposited in the pixel.

The spatial resolution can be determined largely on the basis of pixel-
to-pixel spacing and charge localization between pixels.

When only one x-ray photon is known to have interacted in an element of

the array, then the charge in that element will be _ function of the photon
energy, as in a solid-state detector. Thus, each pixel will have an associ-
ated energy to charge transfer curve, and hence an _nergy resolution curve.
The energy resolution, to a first approximation, is that of a tiny solid
state detector.
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On the average one electron-hole pair is created in the pixel for every
3.6 eV of energy in the x-ray photon. This is a very small amount of energy
when compared with other soft x-ray detectors. Thus, a proportionally great-
er number of electrons will be created for each photon interaction, and the
associated Poisson {or Poisson-like) statistics become more precise.

Since all pixels have a similar type of response, the CCD may be used as
a nondispersive x-ray spectrometer [19.5,6]. The only requirement is that

the probability of any single pixel receiving more than one photon during an
integration period be small.

CCDs have several important characteristics which influence their opera-
tion as x-ray imaging detectors which we will briefly describe. First the
quantum efficiency, defined as the probability of detecting an incident pho-
ton, is a function of x-ray energy and is close to unity for energies bet-
ween I and 10 kilovolts. At the higher energies the efficiency falls off
because the photons pass through the device without interacting while at the
lower energies the efficiency falls off because when the CCD is illuminated
in the so-called front-illuminated mode the x-ray photons are absorbed by
the electrode and insulating structures on the front surface. These struc-
tures form a dead layer between 0.5 to 2 microns thick, and to overcome
their effect CCDs have been operated in a back-illuminated mode. In this

case the silicon substrate is illuminated directly, and to maximize the ef-
ficiency its thickness is tailored to the particular application, a process
known as thinning. This leads to a considerable improvement in sensitivity,
and we have been able to detect carbon K x rays at 250 eV with RCA CCDs
manufactured in this fashion, a

An alternative approach has been developed by Texas Instruments, who have
developed a virtual phase CCD [19.8,9]. In this device the three applied

voltages of the three-phase CCD have been reduced to one. The steplike po-
tential is created through the use of ion implants in the n-type buried
channel. By reducing the number of polysilicon gates per pixel from three to
one, the thickness of the dead layer can be substantially reduced. However,
in our tests of such a front-illuminated device, we were unable to detect
carbon K_,x rays, and so in this respect, the modification is not an adequate
substitution for back illumination.

The intrinsic noise of a CCD limits both the energy resolution and the
length of time a picture can be integrated. Noise levels of 30 electrons rms
can be achieved corresponding to energy resolution of 250 eV. The energy
resolution is essentially independent of energy [19.i0], and therefore CCDs
are better than proportional counters at energies above 500 eV and marginal-
ly worse at lower energies. The ultimate noise goal is of the order of 10 elec-

trons rms, which would be set by the stray capacitance of a few hundred pFs
between the on-chip preamplifier and the las: transfer gate. Noise levels ap-

proaching this have been reported in the literature [19.11] which makes
their energy resolution superior to proportional counters.

To achieve these noise levels, the CCD and the on-chip amplifier have
been cooled. Typical operating temperatures are around -100 °C. However, the
operating temperature can be made too low for there are other completing
factors, of which the most important are the charge transfer efficiency and
the leakage current, which are also functions of temperature. The charge
transfer efficiency is the fraction of the original charge transferred from
one pixel to the next during the readout process. Incomplete charge transfer
results in a loss of both photometric accuracy and dynamic range and intro-
duces smearing of the image. The leakage current is a measure of the charge of
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the spills from an illuminated pixe] to adjacent dark pixels. In our tests
with RCA CCDs we have found that an ideal operating temperature must be de-
termined for each device, which is warm enough so that charge transfer ef-
ficiency is adequate (_ 0.99995 to 0.99999) while still cool enough to keep
the leakage current acceptably low. This tradeoff has to be made on a device
by device basis.

In principle the dynamic range of the CCD is limited by the readout
noise and the full well capacity. The latter scales roughly as the pixel
area, and for 30 _m square pixels the well capacity is _250,000 electrons.
The typical dc ]eve] for the three-phase CCDs we have tested is several hun-

dred electrons, which corresponds to a dynamic range of the order of or less
than I0a.

Although one should be able to extend the dynamic range by improving the
noise characteristics of the preamplifier this is not necessarily true in
the x-ray region. For a single x-ray photon produces a large number of elec-
trons,e.g.,a one kilovolt x ray will contribute in excess of 300 electrons,
and if this value is greater than the noise it will place the limit on the
dynamic range which is thus energy dependent varying inversely with the in-
cident photon energy.

Finally, CCDs have excellent linearity to increases in the incident x-ray
intensity characteristics of solid-state detectors and pixel nonuniformities
arising from processing variations and mask alignment errors during fabrica-
tion are generally quite small.

Ig.3 Applications

Although the primary incentive for our studies of CCDs has been their appli-
cation to astronomical observations there are many other scientific investi-
gations in which their sensitivity and excellent spatial resolution can be
used to advantage. Examples are the in vivo examination, in real time, of
biological specimens and the recording of the x-ray emission arising during
the collapse of the fuel pellets used in inertial confinement fusion experi-
ments.

In x-ray astronomy a heavy emphasis has been placed on obtaining observa-
tions with the highest spatial resolution. In this regard most electronic
detectors have compared poorly to film. However, since film requires recov-
ery which is impossible in most missions, astronomers have had to be satis-
fied with observations which were limited by the detector. As a numerical

example, if we require one arc second resolution and we use a CCD with 15 um
pixels, a focal length in excess of 6 m is required for the optical system.
Such arguments have lead to the choice of a 10 m focal length for the Advan-
ced x-ray Astronomical Facility. The increased image size resulting from a
large focal length is something of a mixed blessing. First, the field of
view subtended by the detector is correspondingly reduced. For instance an
800 x 800 array of 1 arc second pixels subtends a field of just over 13 arc
minutes. This can be compared with the diameter of the sun which is 32 arc
minutes. Secondly, such an image contains a tremendous amount of information
which has to be processed digitally. If the intensity scale is divided into
256 gray levels, the number of bits required to specify the image is in ex-
cess of half a million. Thus unless very high data rates are available, the
transmission time for the image can be very much greater than the exposure
time. This difficulty tends to negate the advantage provided by the high
sensitivity of the CCD which is roughly three orders of magnitude better

u_
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than photographic emulsions and, for solar observation, allows exposure
times of a few to a few tens of milliseconds. In principle this should open
up a new field of coronal observations involving the dynamics of the coronal
structures, changes at boundaries due to magnetic reconnection and the mech-
anisms of flaring events at high spatial resolutions. However, because of
the high telemetry rates that are required the full potential of these stu-
dies has yet to be realized.

An added advantage of the CCD which results directly from its ability to
detect single x-ray photons is its ability to minimize the effects of bloom-
ing. Blooming is the spreading of charge which has accumulated in overexpos-
ed areas to adjacent pixels of the CCD and is common to all electronic imag-
ing systems. In many astronomical applications, the source object has a very
large dynamic range and thus the average flux from the region might dictate
an optimum exposure which causes blooming somewhere else on the chip. How-
ever, if the CCD is used in the single photon or spectrometric mode, many
short exposures which will not cause blooming can be summed electronically,
without loosing spatial resolution because of the digital nature of the de-
vice, to provide a single image with an effective dynamic range larger than
that of the CCD.

19.4 Conclusions

CCDs used for the detection of soft x rays are a relatively new technology.
They hold great promise as astronomical x-ray imaging detectors combining
high spatial resolution and energy sensitivity. In practical applications
CCDs have both advantages and disadvantages over competing technologies. On
the plus side, they are compact, low-power devices whose operation requires
neither the use of high voltages or hard vacuums. On the negative side they
have to be cooled to temperatures on the order of -100 °C for optimum per-
formance.

It is almost certain that in the next few years they will see wide appli-
cation in a variety of space missions and their success will determine their
future development.
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X-ray astronomy, both solar and celestial has many needs for high spatial resolution observations which have to be performed

with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25_tm arc sec i, corresponding to

focal lengths greater than 5 m, are required, In situations where the physical size is restricted, the problem can be solved by the use of

grazing incidence relay optics. We have develope d a system which employs externally polished hyperboloid hyperboloid surfaces to
be used in conjunction with a Woher Schu,,arzschild primary. The secondary is located in front of the primary focus and provides a

magnification of 4, while the system has a plate scale of 28 #m arc sec I and a length of 1.9 m. The design, tolerance specification,

fabrication and performance at visible and X-ray wavelengths of this optical system are described.

i. Introduction

Our understanding of the physical conditions exist-

ing in the solar corona and in particular of the impor-

tance of the interaction between the coronal gas and the

solar magnetic field has increased rapidly during the

past decade. This is a direct result of the technical

achievements in the fabrication of grazing incidence

optics which have enabled the spatial structures of the

corona to be imaged at high resolution in soft X-rays.

The visual identification of a diverse population of

coronal structures has provided both a new framework

for the reformulation of the more classical concepts of

solar physics and an incentive for new ideas. Since

many of the theoretical descriptions describe processes

which occur over very small spatial scales, future ad-

vances will depend on the acquisition of even higher
resolution observations.

In practice resolution is a function both of the intrin-

sic resolution of the optical system and the relationship

of the size of the image to that of the detector pixel. In

the past even images recorded on photographic emul-

sions have been detector limited [1] and the situation is
much worse when solid state detectors are used. How-

ever, for space instruments, electronic imagery has

several advantages over film. it provides better temporal

resolution, it is easier to calibrate, and instrument re-

covery is not required. These are strong incentives for

the development of electronic imaging systems and new

techniques for improving resolution must be found.

When a system is limited by the detector, the two

factors that affect the system angular resolution are the

instrument's focal length and the dimensions of the
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Massachusetts 02173, USA

0167-5087/84/$03.00 _: Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Divisiol_)

detector pixel. Although considerable efforts are being

made to improve the latter, which will undoubtedly

prove fruitful, they are unlikely to surpass the perfor-

mance of photographic film. Therefore, it is essential to

simultaneously explore the alternative of increasing the

focal length of the X-ray telescope.

As a numerical example, if we baseline the pixel

dimensions at 25 p,m, the focal length required to sub-

tend an angle of 1 arc sec across a pixel is in excess of 5

m. Even this modest goal, which corresponds to a

system resolution of order 2.8 arc sec (where we have

defined the system resolution as 2Vr2 pixel size), results

in an instrument size which is sufficiently large to make

it impractical for any but major programs. In normal

incidence systems the solution to this problem would be

to use secondary optics to increase the effective focal

length by magnifying the primary image. Until recently

this approach had not been followed for X-ray imaging

because of the difficulties anticipated in the figuring of

small grazing incidence optical elements and in the loss

of signal to noise associated with the increased scatter-

ing from four reflections instead of the customary two.

However, recent advances in fabrication technology', in

particular in the in-process metrology and in the pre-

paration of low-scatter surfaces, have made their de-

velopment realistic. Consequently, under NASA spon-

sorship, we have designed a grazing incidence magnifier

to be used in conjunction with an existing grazing

incidence primarily to be used for solar studies.

1.1, Deslgn considerations

Two distinct designs [2] for the magnifier are possi-

ble. Their principle of operation is shown in fig. 1 in

which the focal distances are based on using an existing

primary and a secondary magnification of 4. In the first



J.M. Dat_is et al. / Grazing incJ'dence relay optics

GRAZING INCIDENCE SECONDARY OPTICS
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Fig. 1. Diagrams of the two possible designs for secondary grazing incidence optics. The dimensions refer to systems based on an

existing primary mirror and a magnification of 4.

design the secondary optic acts as a microscope and is

located behind the primary focal plane, it is known as a

converging magnifier and has internally reflecting hy-

perboloid and ellipsoid surfaces. Alternatively the mir-

ror can be placed in front of the focal plane where it

acts as a Barlow lens. This configuration is known as a

diverging magnifier and the mirror has externally re-

flecting hyperboloid-hyperboloid surfaces.

In both cases a considerable reduction in system

length required for a given plate scale is achieved, the

examples shown being roughly one third of the single

mirror equivalent. In the present program, this parame-

21

Table 1

General properties of the X-ray mirrors

ter is of critical importance as the telescope will be

flown as a sounding rocket payload. Of the two designs,

for a given object distance and magnification, the di-

verging magnifier is the shorter and was selected. An

additional benefit of this design is that the primary

focused X-rays are bent through a smaller angle to

reach the secondary focus, thus minimiz;ng reflection

losses and maximizing collecting area. In principle the

design is fixed by choosing the magnification and the

object distance. In practice increasing magnification

lowers the system's speed, and increasing object dis-

tance, for a given magnification, lengthens the overall

Primary Secondary

Figure

Material

Principal diameter

Focal length
Geometrical area

On-axis

3 arc min

Plate scale

Field of view

Resolving power

(X-ray)

Wol ter- Schwarzschild

fused silica

30.48 cm

144.9 cm

41.5 cm 2

41.1 cm z

7.0,am (arc sec) n

60×60 (arc min) 2

1 arc sec

hyperboloid- hyperboloid

nickel coated beryllium

3.15 cm

- 19.4 cm

20.2 cm 2

2.7 cm z

28.1 ,am (arc sec) -1

5 × 5 (arc min) 2

1 arc sec

I. X-RAY OPTICS



22 J,M. Dal,ts et al. / Gra:mg incidence rela_' optics

instrument and also increases the physical size of the

polished area and a compromise has to be made. We

chose a magnification of 4 which provides a plate scale

of 28 _m arc sec-] while retaining reasonable exposure

times. The object distance, which is the separation be-

tween the principal plane of the diverging magnifier and

the primary focus, is 14.55 cm. This leads to an overall

length for the imaging system of 189 cm which is within

the 2 m limit established for the experiment. The gen-

eral properties of the primary and secondary mirrors are

summarized for reference in table 1.

2. Specification and fabrication

The equations for the external mirror surfaces of the

diverging magnifier are:

1st Hyperboioid:

(z+c) 2 _,2
c 2 _ b z b z

2nd Hyperboloid:

(z+2c+/) 2 x z
1,

f2 _ e 2 e 2

where c=1.726981, b=0.147002, e=0.293203, f=
6.870371.

The constants are defined in fig. 2, which shows the

geometrical properties of the surfaces and their relation

to the primary mirror. The first hyperboloid is located

so that one of its foci is co-spatial with the focus of the

primary mirror. Its second focus is confocal with the

first focus of the second hyperboloid. The second focus

of this last surface forms, in turn, the secondary focus of

the telescope. Since hyperboloids have two loci, small

deviations from the design surface can be compensated

for by axial displacements with no drawbacks other

than a slight change in the overall focal length.

The mirror is fabricated, in two pieces, from optical

grade beryllium. The reflective surfaces are electroless

nickel which is applied to a depth of 0.13 mm over all

the surfaces of the two elements. Each section is sep-

arately mounted to a central plate made of high-strength

stainless steel. It is supported by four fingers which

together intercept less than 3% of the open aperture.

The steel chosen, 17-4PH, heat treated to condition

HI150, provides a very close thermal match to the

beryllium, which is essential to avoid radial distortions

of the mirror surfaces under changing temperature con-

ditions.

Although the primary mirror is made of uncoated

fused quartz, there appear to be no scientific reasons for

expecting the dissimilar surfaces to adversely affect

performance. It will of course modify the passband of

the instrument. The choice was made primarily for

practical (e.g. cost, manufacturing capabilities of the

local area) rather than scientific considerations. On the

positive side it results in a lighter optic which allows the

supporting fingers to be made narrower than would

otherwise have been the case.

The dimensions of the pieces are shown in table 2,

COMING RAY

ELEMENTS

••

o°

"° •°°°

".°

°•°

HYPERBOLOID*el

FP

RAY AFTER

TWO REFLECTIONS

Fig. 2. The geometric relationships for hyperboloid-hyperboloid external surface mirrors.
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Table 2

Secondary mirror demensions (Note: dimensions are in inches).

Diameter at front of 1st hyperboloid 1.40804

Diameter at rear of 1st hyperboloid 1.24878

Calculated diameter at mid-plane 1.24000

Diameter at front of 2nd hyperboloid 1.23527

Diameter at rear of 2nd hyperboloid 1.16,133

Length of 1st hyperboloid 0.91006

Length of 2nd hyperboloid 0.74605

Gap for center plate 0.10000

and the tolerances placed on the reflecting surfaces are

shown in table 3. The most demanding tolerances that

must be met during the fabrication of the mirror are the

roundness of the elements and the deviation of the local

slope from that predicted by the design curve. The

principal roundness criterion is the variation in the
difference between the forward and aft radii of each

piece as a function of azimuth. This tolerance is referred

to as A(AR) and for this mirror has to be less than 1.5

p.m. This is a tighter specification than usual for grazing

incidence mirrors and is a consequence of their small

size. However, the tolerance was met in the fabrication

of an X-ray microscope [3] which had similar di-

mensions, and depends on the precision of the turning

machine, for which this is not an unreasonable require-

ment. The axial slope error is 0.05 p.m per cm. Achieve-

ment of this tolerance depends more on the sensitivity

of the in-process metrology than on the figuring tech-

niques. Recent improvements using laser scanning

instruments make this possible. A typical observation,

after reduction, is shown in fig. 3. The observations are

repeatable and demonstrate the ability to measure the

surface at the nanometer level.

Fabrication [4] of the secondary mirrors takes place

in the following steps. First, the selected beryllium

blanks are diamond turned to the approximate dimen-

sions of the mirror elements. Since the polished area is

relatively small, roll over at the ends will have a major

negative effect. Therefore the blanks are turned and

Table 3

Mirror tolerances (Note: tolerances are in inches).

Optical tolerance Specification

OutofroundnessAR=(Rm_,-Rmin) 40:'<10 6
200×10 -6

A(AR) 6×10 6

Sagittal depth 3 × 10 -6

A slope per axial length of one inch 5 × 10 -6

Surface finish rms roughness < 10 A
Performance tolerance
Resolution 2 arc sec with a

one arc sec design goal

incidence rela_; optics 23
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Fig. 3. Analyzed data recorded during acceptance testing of an

X-ray microscope [5]. In practice the data are continuous and

deviations from the true surface of 1.0 nm or less are easily
detectable.

lapped with removeable end pieces in place. The ma-

chined blanks are nickel plated and the surfaces are

again diamond turned, lapped and the surface profile

measured in-situ. The work is being performed in a

modified Random [5] machine utilizing linear, air bear-

ing slides to define tangents to the best fit circle. This

circle is used to guide the lathe head which holds the

mirror during turning and lapping. The radii of curva-

ture, which in our case are on the order of 40 m, are

determined with an accuracy of + 2 cm and the location

of the center of curvature with respect to the surface is

known to be better than 1 part in 4000.

The in-process metrology uses a laser beam which is

scanned over the surface in a controlled way and the

local slope is determined from the reflected beam using

a position-sensitive detector. The difference between the

slope of the required surface and the best fit circle is

corrected optically before display and the signal can

also be integrated electronically to obtain the sagittal

depth as a function of position. Once a satisfactory

surface has been obtained the end pieces are removed

from the finished mirror and the radial dimensions

measured. Finally, the surfaces are superpolished to

provide a low-scatter finish.

3. Expected pedormance

The design was based on optimizing the resolution

and effective collecting area of the secondary mirror

which are the most important performance parameters.

Resolution depends strongly on off-axis angle, and col-

lecting area is, in addition, a function of wavelength.

The results of ray-tracing calculations are shown in figs.

4 and 5. NOTE: Resolution is defined in this case as the

rms blur cirlce radius which in general underestimates

the practical resolution except for on-axis rays.

Our ray tracing indicated that a trade-off had to be

made between effective area, resolution and field of

view. The design goal was to keep the rms blur circle

I. X-RAY OPTICS
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Fig. 4. The dependence of the effective area and the rms blur

circle radius of the combined mirror system on the deviation

from the optical axis of the incident ray.

radius below one arc second. This criterion limits the

field of view to about 1 arc min. From fig. 4 it can be

seen that even this restricted field is vignetted around

the perimeter. The vignetting results in part from our

choice of element length, for not al} the primary rays

which can contribute to the image are refocused. How-

ever, the rays that are missed are in fact poorly focused

by the secondary mirror. Therefore, increasing the ele-

ment length to catch these rays, although increasing the

off-axis area, does so only at the expense of greatly

increasing the blur circle radius. We have chosen to

deliberately sacrifice some collecting area and accept

the vignetting in order to maintain the highest image

quality.

Alternatively, the field of view could be defined at

the position where the effective area has dropped to

one-tenth of its maximum value. This occurs a little

beyond 3 arc min from the central axis. In practice solar

active regions, which will typically be the target for this

instrument, occupy areas of order (5 × 5) arc" rain2; and

the vignetting at the edge of the field of view will be

about 80%. It remains to be seen how severe an impact
this will have on the observations. However, since re-

cording and display will be performed electronically, if

the system is properly calibrated, it should be possible

to remove the effect of the vignetting during display

processing. The field of view has to be matched to the

physical size of the detector. At the secondary focus, an

angular displacement of 5 arc rain corresponds to 0.84

cm which provides a reasonable fit to typical CCDs

suitable for use in the soft X-ray region.

The on-axis effective area of the combined system is

approximately 20 cm 2 which is approximately 50qr of

the primary alone. Thi's is a result of the combination of

reflection losses and the limit set on the element lengths

100" I

T l

_o IO.
I

u_

,.o

J_ I

IO IOO

WAVELENGTH -_NGSTROMS

Fig. 5. The wavelength dependence of the effective area for
on-axis (8 = 0°) and off-axis (8 = 1 arc rain) rays.

by the resolution criterion. The increase in image size

reduces the secondary image brightness by a further

factor of 16; therefore, the brightness at the center of

the secondary image will be reduce4[ by a factor of 30

from the brightness of the same feature viewed in the

primary image. Since imaging bright solar features on

photographic emulsions requires exposure times of 1-3

s at the primary focus, exposure times up ]00 s will be

required at the secondary focus. Although this is possi-

ble, the temporal resolution would be poor and it is

obvious that secondary optics and solid state detectors

make natural partners, The increased sensitivity to soft

X-rays of the latter, which is on the order of 1000, will

allow exposure times of less than one second at the

secondary focus. In this situation, time resolution is

more likely to be limited by the data handling capability

of the telemetry system than by the sensitivity of the

detector.

4. Program status

Although it had been expected that the secondary

optic would have been completed by the time of this

workshop, this has not been the case. At this time

turning and polishing of the first hyperboloid has just

started. All the procedures that will be used have been

tested on an aluminum blank and we have a high degree

of confidence that the finished optic will meet our

specifications.

Upon completion of the first hyperboloid the metrol-

ogy will be reviewed and the surface of the second
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hyperboloid recalculated if necessary. Following final

assembly the spatial resolution of the optic will be

tested in visible light using a USAF 1951 resolution

target placed at the focus of a converging beam with an

f-number of 4.6 and 97% occulted, the acceptance crite-

rion at this stage is 2 arc sec resolution with 1 arc sec as

a design goal.

Upon acceptance the optics performance will be

tested in both visible light and X-rays in conjunction

with the primary. Since the alignment of the two mirrors

will be critical, we have designed a special alignment

and holding mechanism which will be used for both

flight and ground testing. The mechanism permits inde-

pendent translation along three orthogonal axes to-

gether with rotations in pitch and yaw. Adjustment in

increments of 2.54/xm is possible along the optical axis,

in increments of 25 _m along the two orthogonal axes

and of 1 arc sec about the two axes of rotation.

X-ray testing will be performed in AS&E's recently

extended 100 m vacuum facility. Parameters measured

will include spatial resolution, collecting area and point

response function, both on- and off-axis and at several

wavelengths including as a minimum 8.3 and 44 ,_.

The revised delivery schedule has the optics being

delivered in August 1983. The complete testing program

will take a further six months. The results of these tests

will be reported in a subsequent paper.

It is a pleasure to acknowledge the help of the staff

of the Applied Optics Center where the secondary optic

is being fabricated. We would also like to thank Alan

DeCew who has contributed to the fabrication proce-
dures.

The work is being performed under NASA contract

NAS5-25496.
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Abstract. We compare simultaneous high resolution soft X-ray and 6 cm images of the decay phase of an

M3 X-ray flare in Hale Region 16413. The photographic X-ray images were obtained on an AS & E

sounding rocket flown 7 November, 1979, and the 6 cm observations were made with the VLA. The X-ray

images were converted to arrays of line-of-sight emission integrals and average temperature throughout the

region. The X-ray flare structure consisted of a large loop system of length ~ 1.3 arc min and average

temperature ~ 8 x 106 K. The peak 6 cm emission appeared to come from a region below the X-ray loop.

The predicted 6 cm flux due to thermal bremsstrahlung calculated on the basis of the X-ray parameters along

the loop was about an order of magnitude less than observed. We model the loop geometry to examine the

expected gyroresonance absorption along the loop. We find that thermal gyroresonance emission requiring

rather large azimuthal or radial field components, or nonthermal gyrosynchrotron emission involving

continual acceleration of electrons can explain the observations. However, we cannot choose between these

possibilities because of our poor knowledge of the loop magnetic field.

1. Introduction

Recently advances have been made in mapping the microwave emission of both the

flaring (Kundu and Vlahos, 1982) and the quiet (Kundu, 1982) Sun with high temporal

and spatial resolution. While gyrosynchrotron emission from nonthermal electrons

appears to be the obvious radiation mechanism for the flaring case, thermal mechanisms

involving bremsstrahlung and gyroresonance emission at harmonics of the gyro-

frequency are the best candidates in the non-flaring case. In the latter case the

gyroresonance absorption process has been invoked for strong sunspot-associated

magnetic fields and bremsstrahlung for the plage regions of weaker fields (Kundu et al.,

1977; Alissandrakis etal., 1980; Felli etal., 1981).

The combination of simultaneous X-ray observations and microwave maps has

constrained the range of possible microwave emission mechanisms by allowing a

determination of the electron thermal temperature Te, linear emission integral f n_ dl,

and, perhaps, electron density ne, independently of the microwave observations. Some

observers (Chiuderi-Drago et al., 1982; Lang et al., 1983; Shibasaki et al., 1983) have

found good agreement between the combined X-ray and microwave observations and

the accepted radiation mechanisms for quiescent active region features. Others (Webb

et al., 1983; Schmahl et aL, 1982) have found some significant differences between the

detailed locations of the active region X-ray and microwave sources. In cases of high

Solar Physics 92 (1984) 271-281. 0038-0938/84/0922-0271501.65.

© 1984 by D. Reidel Publishing Company.
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microwave brightness temperature, Tb, but low X-ray brightness, thermal brems-

strahlung is not a viable microwave emission mechanism, and gyroresonance absorption

theory may require unrealistically large magnetic fields.

An interesting long-lasting burst on 19 May, 1979 was mapped at 20 cm by Velusamy

and Kundu (1981). The 20 cm emission occurred in three looplike structures and was

interpreted as either thermal gyroradiation or as nonthermal gyrosynchrotron emission.

Subsequent comparison of these maps with soft X-ray images from the P78-1 satellite

revealed that only one of the three 20 cm sources coincided with an X-ray source,

leading Schmahl et al. (1983) to favor the nonthermal interpretation. The observations
discussed here are similar to that event in that we have simultaneous 6 cm microwave

maps and soft X-ray images during the decay of an M3/1B flare on 7 November, 1979.

We find that the region of peak 6 cm emission is not spatially coincident with the bright

soft X-ray loop responsible for the bulk of the X-ray emission. The mechanism of the

6 cm radiation emitted by the X-ray loop is discussed in detail using gyroresonance

absorption theory and a simple model of the loop magnetic field.

2. Observations and Data Analysis

2.1. SOFT X-RaY DATA

The American Science and Engineering (AS & E) rocket flight of 7 November, 1979 was

the first of two flights to observe the X-ray Sun at solar maximum. The grazing incidence

X-ray telescope payload included a Wolter-Schwarzchild fused quartz mirror and four

different filters. Full-disk images with a spatial resolution of approximately 2 arc sec

were obtained on Kodak SO-212 film between 20:51 and 20 : 56 UT.

The brightest feature of these images was a flare loop in Hale Region 16413. For our

quantitative analysis of this loop we used two adjacent exposures through a 1/2 nail

beryllium filter and similar exposures through a 1 micron aluminized polypropylene

filter, both obtained at about 20 : 52 UT. The images were converted to arrays Of film

density with pixels of size 2.8 arc sec square. The analytic procedure given in Vaiana

et al. (1977) for conversion of film density to effective temperature and linear emission

integral was followed closely. Calibrations of film density to energy flux and point spread

functions at 8.3 A and 44 A were used in the analysis of the beryllium and polypropylene

images, respectively. The deconvolved energy flux density image obtained with the

polypropylene filter is shown in Figure 1. Arrays of 4 x 4 pixel averages (11.4 arc sec

square) were used to obtain maps of effective temperatures and linear emission integrals

at points along the loop.

2.2. MICROWAVE DATA

The radio observations were made of Hale Region 16413 at 6 cm with the Very Large

Array (VLA) of the National Radio Astronomy Observatory between 19 : 50 and 20 : 37

and then 20 : 50 and 21 : 18 UT. Seventeen antennas were available during the observa-

tions, providing good u - v coverage. The system was sensitive to structures smaller

than 3 arc min because the shortest spacing used for these maps was 1200 _..
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Fig. 1. (a) Deconvolved soft X-ray image of flaring loops in Hale plage region 16413 at 20:52 UT on

7 November, 1979. The original image was obtained on SO-212 film through a I micron polypropylene filter

with a passband of 8-39, 44-64 A. (b) Axis of the X-ray loop with every 15 ° positions of angle _tindicated.
6 cm brightness temperature contours are superimposed. The temperature of the lowest contour is 106 K

with successively higher contours separated by levels of 106 K. The radio map is an integration over

20:50-20:55 UT. The 6cm beam resolution is shown; the long axis lies along celestial N-S.

(c) Simultaneous Ha image from the HoUoman SOON station. (d) KPNO magnetogram at 19:18 UT with

the superimposed 6 cm contours. All images are aligned to within ~ 10 arc sec.

Synthesized maps of total intensity were obtained of a field of view of 7.2 x 7.2 arc min

with a synthesized beam of 19 arc sec by 15 arc sec. The observing procedure, calibra-

tion, and cleaning methods were similar to those discussed by Kundu and Velusamy

(1980).
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2.3. CHROMOSPHERIC AND PHOTOSPHERIC DATA

Hale Region 16413 was a new active region first observed near the east limb at S 15 on

3 November. Over the next several days the plage grew in area and intensity, reaching

an area of 5000 millionths of a solar hemisphere on 7 November (Solar-Geophysical

Data, 1980). Over this same period, the magnetic configuration became more complex;

on 7 November it was a bipolar group with a delta configuration and peak fields

exceeding 2000 G. This region was the brightest feature on the Sun in the 2.0 cm

La Posta dally map.

A IB Hot flare occurred in region 16413 at S 13 E22 beginning at approximately

20 : 00 UT with a maximum at ~ 20 : 34 UT. The associated GOES 1-8/_ X-ray flare

reached a peak flux density of 3 x 10-s W m-2 (M3) at about the same time. By

20:52 UT, the time of the observations reported here, the 1-8 ,_ flux density had

declined to 1 x 10- 5 W m -2 (M1). The 2.8 GHz Ottawa burst reported for this event

was a gradual rise and fall burst with a peak flux of 14 sfu at 20 : 38 UT. The Hot image

from the HoUoman Solar Optical Observatory Network (SOON) station is shown in

Figure 1 along with the Kitt Peak National Observatory (KPNO) magnetogram

obtained that day. The position of the Ha image and magnetogram relative to the 6 cm

map was found by converting the solar positions of the sunspots to celestial coordinates

and matching those with the radio map. The X-ray, H_t, and magnetogram images were

aligned using sunspots as an intermediary. The resulting H_t and X-ray images,

magnetogram, and radio map are all aligned to within about 10 arc sec.

2.4. COMPARISON OF THE X-RAY AND MICROWAVE DATA

The images of Figure 1 show that the peak of the 6 cm emission is displaced from the

X-ray loop by about 20 arc sec. It appears to be associated with a lower-lying compact

Hot flare region on the magnetic inversion line. The earlier radio maps near the peak of

the event also show that the centroid of the emitting region coincides with the peak of

Figure 1. The peak 6 cm region appears to have no well defined X-ray counterpart

although the re#on is not devoid of X-ray emission. Unfortunately, lack of a well defined

X-ray structure has precluded a detailed analysis of that feature. Our interest here is in

using the plasma parameters deduced for the X-ray loop to determine the mechanism

of the 6 cm radiation from the loop. There are three generally accepted candidate

mechanisms: (1) thermal bremsstrahlung; (2) thermal gyroresonance emission; and

(3) nonthermal gyrosynchrotron emission.

The length of the X-ray loop is about 80 arc sec, measured linearly between the

footpoints while its diameter varies between ~ 35-45 arc sec, depending upon where it

is measured. The longest dimensions of the H0t flare regions at each footpoint of the loop

are ~ 35-45 arc sec. Since these are in agreement with the X-ray observations, we have

used an average diameter of 40 arc sec. The temperature distribution of the X-ray loop

is confined to the narrow range Te _ 6.5-8.5 x 106 K. The temperature of the top of

the loop averaged over an area 57 arc sec along the loop by 34 arc sec across the loop

is T_ = 8.2 _+0.2 × 106 K and for the larger region of 120 arc sec by 80 arc sec, encom-
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passing the entire loop and surrounding area, is Te = 7.6 +_0.3 x 10 6 K. The peak linear

emission integral along the line of sight near the axis of the loop is
2 dl 1.4 x l029 cm- 5 For a loop thickness of I 40 arc sec _ 3 x 10 9cm,_n e = . -_

n e = 7 × 109cm -3.

To estimate the importance of thermal bremsstrahlung to the radio emission, we first

calculate the optical depth at 6 cm using the derived X-ray parameters in the equation
from Kundu (1965),

0.16 fn_dl, (1)
"Cx V2 T 3e/2

where v is the frequency of the radio observations. For _ n_ dl = 1.4 x 1029cm - 5,

v---5.0GHz, and a lower limit of Te = 6 × 106 K, we get an upper limit of
zx = 6.1 x 10-2. Therefore, for these conditions the corona is optically thin and

Tb = %Te = 3.7 x 105 K. This value is about an order of magnitude less than the

observed values along the loop. Thermal bremsstrahlung may therefore make a small

contribution to the observed Tb, but it cannot be the dominant emitting mechanism.
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Fig. 2. Loop electron densities and thermal temperatures required to achieve an optical depth of unity in

the extraordinary modes of the s = 3, 4, and 5 resonant harmonies of the gyrofrequency. The assumed
frequency is 5.0 GHz (6 cm) and the e-folding length of the magnetic field magnitude is 109 cm. The optical

depth scales linearly with both this length and with n,, being less than unity to the left and greater than unity

to the right of each curve. Dashed and solid lines show unity optical depths for values of 0, the angle between

the magnetic field and the line of sight, equal to 30 ° and 60°. The magnetic field intensities required for

each harmonic are 600 G for s = 3,450 G for s = 4, and 360 G for s = 5. Vertical line indicates the density

corresponding to the plasma frequency of 5.0 GHz, to the right of which wave propagation does not occur.

The shaded oval corresponds to the range of X-ray loop parameters deduced for the 7 November, 1979 flare.
After Kundu et al. (1980).
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Another obvious candidate for the 6 cm emission mechanism is thermal emission due

to the enhanced absorption at low harmonics of the gyrofrequency vH. Following Kundu

et al. (1980), we show in Figure 2 the loop densities and temperatures required to achieve

an optical depth of z = 1. We assume, as they did, an e-folding length of 109 cm for the

magnetic field scale length. For the density and temperature range characteristic of the

X-ray loop (shown by the shaded oval) we see that only the fourth and fifth (s = 4, 5)

harmonics are viable emission mechanism candidates to produce z< 1. These

harmonics require magnetic fields of 450 and 360 G, respectively, which do not seem

unreasonable in view of the fact that the loop footpoints are in the vicinity of the strong

spot fields of the active region.

The optical depth due to gyroresonance absorption is a strong function of 0, the angle

between the magnetic field direction and the line of sight. Using the expression for the

absorption coefficient of the extraordinary mode and the e-folding thickness of the

resonance region of 109 cm given by Takakura and Scalise (1970) and by Kundu et al.

(1980), we have

(2kTey -I
Zres = O.030¢n,\moC2 / (sin0)Z__2(cl + czcos0 ) I (2)

VH

where # = 10.7 and 63.6 for s = 4 and 5, vH = s- t x 5.0 GHz, l is the scale length of

the magnetic field, and c_ and c2 are functions of s and 17given explicitly in Takakura

N

E 22 S 13

E I ...t". . • lw{ . / . ® i
\ "'*),__,/ /

S

Fig. 3. Schematic model of the X-ray flare loop shown in Figure l(a). The flare center is taken as E 22 S 13

on the solar disk, but with the loop endpoints assumed to lie in an east-west direction. Curved line is the

semicircular loop axis projected onto the plane of the sky with crosses at every 15 ° increment of e, the angle

subtended to the axis of the loop by the arc length, increasing westward from the eastern footpoint. The

angle given at each cross is that of 0, the angle between the magnetic field direction and the line of sight.

The plane of the loop lies 32 ° south of the line of sight. A similar semicircular loop lying in a plane in the

local solar vertical is shown by the dots; this gave a poor match to the observed loop perspective and was

not used. Points with circles indicate positions where 0= 90 ° for each loop. The outer line shows

approximate outline of loop edges for loop diameter of 40 arc sec or ~ 3 x 109 cm.
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and Scalise (1970). We can use Equation (2) to calculate rr_s for s = 4 or 5 at any part

of the loop by using the values of ne and Te derived from the X-ray observations,

assuming an ! consistent with those observations, and knowing 0.

[n order to find 0 at points along the axis of the loop, we have modelled the X-ray

loop as a simple semicircular structure as shown in projection in Figure 3. Since the flare

position was E22, we assume a 22 ° angle between the line of sight and the meridional

plane bisecting the loop. The flare was 13 ° south of the solar equator, which places it

about 17 ° south of the Sun-Earth line. We assumed the loop plane to project radially

from Sun center and then calculated the shape of the projected loop axis shown by the

dots of Figure 3. The ratio of the projected loop height to the projected loop length was

far too small to match the values observed for the X-ray loop. A good match was

achieved by letting the plane of the loop be 32 ° south of the plane containing the

Earth-Sun line, which means the loop plane lay 15 ° south of the local solar vertical.

The angle 7 is defined by the eastern footpoint, the center of curvature of the loop and

the point of interest along the loop. Assuming the B field parallel to the loop axis, we

have calculated the corresponding values of 0 and rrc s for 15 ° increments in _ and

plotted them in Figure 4. A value of ! = 10 9 cm, about one third of the apparent loop

diameter derived from the X-ray measurement was used. The measured X-ray tempera-

ture was used at each point, and ne = 7 x 109 cm- 3 was assumed for all points. It is

known (Kundu, 1965) that the quasi-longitudinal approximation used here is only valid

for sin 4 0 ,_ 4s 2 cos z 0, which limits 0 to values less than ~ 80 ° . A substantial decrease

in _ is expected at 0> 80 °, the region between the dashed lines in Figure 4 (Holman,

private communication). With increasing _, 0 would become greater than 90 ° on the

west side ofthe loop, but we have assumed a polarization change and use 0 = 180 ° - 0

for the extraordinary mode calculation in that region. The 6 cm polarization maps

obtained at the VLA were too noisy to be used as a test of this assumption.

The observed 6 cm optical depths along the loop axis derived from the radio brightness

temperature maps using T b = T e (l -e-T) are compared with the calculated gyro-

resonance optical depths in Figure 4. The s = 5 optical depths are in fair agreement with

the observed values for large angles near the loop top, and the s = 4 depths are in fair

agreement near the footpoints, but neither individual curve matches the relatively flat

distribution of _ with 0 over the entire loop. Qualitatively, it is conceivable that the loop

magnetic field intensity could be around 450 G at the footpoints, decreasing to around

360G at the top in just such a way that the sum of the s=4 and s= 5

tunately, the photospheric magnetic field observations were severely degraded due to

poor observing conditions, so that no quantitative estimates of the magnetic field

intensity along the loop could be made. In addition, since the assumed value of I could

be in error by a factor of 3 or more, this scenario seems unlikely.

The comparisons of Figure 4 are further limited by our lack of detailed knowledge of

the topology of the loop magnetic field. If the ratio of the loop height to the distance

between footpoints is larger or smaller than assumed, the range of 0 will be somewhat

larger or smaller, respectively, than that shown in Figure 4. However, a lower assumed

loop height would require that the plane of the loop be inclined at more than 15 ° to the
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Fig. 4. Crosses and squares show optical depth z calculated for the fourth and fifth harmonics of the

gyrofrequency as a function of both :t and 0 for the loop model of Figure 3. The quasi-longitudinal
approximation is not valid for 0>_ 80 °, the region between the dashed lines; a drop in z is expected there.
A density of n, = 7 x 109 cm 3 and a magnetic field scale length of/= 109 cm was assumed for 5.0 GHz;

temperatures were then calculated from X-ray measurements for each point along the loop. Filled circles
show the values of _ deduced from the measured radio brightness temperatures at corresponding points

along the loop.

local solar vertical direction. Another possibility is that the loop field lines are helical,

rather than parallel to the loop axis. If so, a range of 0 would be associated with each

angle _ of Figure 4, resulting in a flatter distribution of r with 0. We calculate that an

angle of about 40 ° between an azimuthal field component B_ and the longitudinal

component B_, both assumed constant throughout the loop, will result in fair agreement

between the s = 5 curve and the observed values of T shown in Figure 4. For example,

in this case the values of z at 0 = 30 ° and 40 ° are 0.13 and 0.21, respectively, which

are only slightly lower than the observed values. Furthermore, the lack of any drop in
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for 0 > 80 ° is also expected in this model. Because the observed loop is thick, with

L/a = 4, where a is the loop radius and L the loop length, the threshold for the external

kink instability (Spicer and Brown, 1981)

B_ln(L/a) > B_ (3)

is not satisfied, and the loop is stable. A similar range of 0 might also result from a

spreading of the cross section of the loop with height, particularly near the footpoints.

Thus we see that the assumption of large azimuthal or radial field components can result

in much better agreement between the observed and calculated values of • than that

shown in Figure 4.

A final candidate to explain the optical depth of at least part of the loop is

gyrosynchrotron emission. Petrosian (1982) has modelled the gyrosynchrotron emission

expected from a flaring semicircular magnetic loop similar to our model shown in

Figure 3. For loops near the center of the solar disk his uniform trap model, in which

the magnetic field is nearly uniform and the electron pitch angle distribution isotropic,

yields maximum microwave emission near the loop top and a minimum at the

footpoints. In his nonuniform trap model, in which the magnetic field intensity decreases

rapidly with height and the pitch angle distribution is broadest at the footpoints, the

strongest emission arises from the footpoints. The uniform trap model was preferred to

account for the observations (cf., Kundu et al., 1982) of the impulsive phase peak flare

emission at the tops of loops, but in our case, if gyroresonance absorption from either

the s = 4 or s = 5 harmonic is effective at the loop top as shown in Figure 4, the

nonuniform trap model better fits the data.

Any nonthermal electrons responsible for the 6 cm emission observed at 20 : 52 UT

cannot have been accelerated tens of minutes earlier near the flare maximum. Using the

equation of Kundu and Vlahos (1982) for the collisional deflection time of energetic

electrons,

Z D = 2 × 10 8 E 3/2 (keV) n_- i s, (4)

we find that zo is only 30 s for the derived loop density and for E = 100 keV electrons.

Thus, the gyrosynchrotron explanation for the 6 cm emission from the X-ray loop

requires continuous or continual acceleration of electrons of E > 100 keV, the energy

range required for microwave gyrosynchrotron emission (Takakura, 1972).

3. Discussion and Conclusion

We have used the plasma parameters deduced from X-ray observations to infer the 6 cm

radiation mechanisms of the bright flare loop in its decay phase. The apparently simple

geometry of the X-ray loop has allowed us to test gyroresonance absorption theory using

a semicircular loop model to look for the strong dependence of _ on 0. Earlier studies

(e.g., Schmahl et aL, 1982) had invoked gyroresonance harmonics only as high as the

fourth (s = 4) to explain the 6 cm emission from active regions, but in our study the large

values of Te and ne combined with the low 6 cm values of r have made s = 5 harmonic
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emission a possibility. For a uniform axial field we find that no single gyroresonance

harmonic can account for the relatively flat distribution of _ vs 0, but an unlikely

combination of the s = 5 harmonic at the top of the loop and the s = 4 harmonic at the

loop footpoints is consistent with the observations. Magnetic fields in the range of 360

to 450 G are required for these harmonics. We also investigated the effect ofnon-parallel

field distributions on the gyroresonance model and find that azimuthal or radial field

components at an angle of about 40 ° to the axial field can explain the observations.

We also investigated qualitatively gyrosynchrotron emission from nonthermal

electrons to explain the 6 cm emission mechanism along at least the lower part of the

loop. Gyrosynchrotron emission as an alternative to thermal gyroradiation had earlier

been suggested by Velusamy and Kundu (1981) as the radiation mechanism for 20 cm

postflare loops they observed with the VLA. They used the > 2.5 hr lifetime of the

observed burst to infer the loop magnetic field strength on the assumption that this

lifetime was the radiative decay time of mildly relativistic electrons. Their calculation

is valid, however, only if the radiative loss time is shorter than the collisional loss time,

which, in their case, requires ne < l0 s cm - 3. This condition is definitely not fulfilled in

our case, where ne _ 7 x 109 cm- 3. Thus if the 6 cm emission is nonthermal, it must

be from newly accelerated electrons and not from electrons surviving from the earlier

flare maximum.

Nonthermal emission has also been suggested for some 6 cm quiescent active region

loops by Webb et al. (1983). In their case the 6 cm components were not associated with

any X-ray emission. The low temperatures and/or densities inferred from the X-ray

observations permitted only low harmonics (s -- 2 or 3) with their associated unrealistic-

ally large magnetic fields (900 or 600 G, respectively) as acceptable gyroresonance

absorption mechanisms. Schmahl et al. (1982), faced with essentially the same dilemma

in a similar study, suggested localized current systems to enhance the coronal magnetic

fields and retain the gyroresonance mechanism. In our case the fifth harmonic of

gyroresonance emission requires a field of only 360 G, which is not unreasonable in view

of the presumed strong fields of the flare region. We find that such thermal emission

can explain the observations over the whole loop only if there are rather large azimuthal

or radial field components. Alternatively, the gyrosynchrotron hypothesis can account,

at least in part, for the observations if a continuous supply of energetic electrons is

available. We conclude that one or a combination of these mechanisms is the likely

source of the microwave emission, but that we cannot choose among them because of

our poor knowledge of the loop magnetic field.

This lack of more detailed knowledge of the loop magnetic field intensity and

geometry has been a serious obstacle in our effort to assess the role of gyroresonance
emission as the 6 cm radiation mechanism. Although the X-ray loop was large, with

fairly uniform brightness and well determined longitudinal temperature and density

distributions, important assumptions about the shape and orientation of the loop and

the helicity and scale length of the magnetic field were required to calculate the

gyroresonance optical depth. We find that models based on either gyroresonance or

gyrosynchrotron mechanisms can be made to fit the observations by a suitable choice
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of poorly known parameters. Complete microwave polarization and multi-frequency

observations are required to better infer the coronal magnetic field. Future tests of

gyroresonance theory will benefit greatly from a combination of such high-resolution

microwave observations and X-ray and photospheric magnetogram images, and should

allow us to confirm or elimitate one of these mechanisms from consideration.
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Abstract. To study the formation and development of coronal holes, their association with X-ray bright

points has been investigated. The areal density of X-ray bright points was measured within the boundaries

of coronal holes and was found to increase linearly with time for each of the three, long-lived, equatorial

coronal holes of the Skylab era. Analysis of the data shows that the effect is not the result of global changes

in bright point number and is therefore a property of the restricted longitude region which contains the

coronal hole. The bright point density at the time of the hole's formation was also measured and, although

the result is more uncertain, was found to be similar to the bright point number over the solar surface. No

association was found between bright points and the rate of change of coronal hole area.

1. Introduction

Coronal holes are regions of exceptionally low density in the inner corona, which have

been observed at both soft X-ray and Hex 10830 A wavelengths for over a decade.

However, a definitive explanation of their formation and subsequent evolution is still

missing. For example, X-ray observations exist for the birth of only a single coronal hole

(Solodyna et al., 1977). In this case the hole developed rapidly, i.e., in less than a day

and with a growth rate three times faster than the long term average of all holes; a result

which is consistent with the He I 10830/_ coronal hole observations (Harvey and

Sheeley, 1979). This behavior led Nolte et al. (1978a) to conclude that the conditions

for coronal hole development are built up over a longer period of time and the actual

birth is triggered by an event (or events) which leads to the rapid opening of field lines.

This hypothesis is supported by the observations of the photospheric magnetic field

beneath the hole which shows little if any change during the period of the hole's rapid

growth (Harvey and Sheeley, 1979).

The subsequent development of coronal holes has been linked to the process of

random walk diffusion, proposed by Leighton (1964) to explain the transport of surface

magnetic fields. This phenomenological description is known generically as the model

of locally unbalanced flux (Timothy et al., 1975; Bohlin, 1976; Bohlin and Sheeley,

1978; Broussard et al., 1978). In it the flux from an emerging bipolar magnetic region

(BMR) reconnects to opposite but pre-existing flux in its immediate environment. The

reconnection results from the separation, through diffusion of the original BMR, and

leads to regions of a single polarity with field lines that are open rather than closed.

Observational support for the model was provided by the results of several studies

(Timothy etal., 1975; Bohlin, 1977; Nolte etal., 1978a) which measured the areal

growth and decay rates of coronal holes. They found that on average (dA/dt)ch is
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approximately 1.5 x 104 km 2 s-_. In Leighton's (1964) model for the transport of

surface magnetic fields, this rate can be related to the diffusion coefficient, D, through

the equation (Mosher, 1977)

O __ 1. '(7)4 t 4n

where L 2 is the mean square displacement over the time interval t. The coronal hole

measurements lead to a value for D of 1.2 x 10 3 km 2 s - 1 which, although somewhat

larger, is still consistent with Leighton's value of 800 km 2 s - t. However, Mosher (1977),

who repeated Leighton's analysis using more recent observations and analytical tech-

niques, concluded that the most probable value of D is of order 200 km 2 s - _ and that

values as high as 1000 km 2 s-l can definitely be excluded. Thus the coronal hole

observations join the growing body of evidence, e.g., measurements of the supergranule

velocity fields (Worden and Simon, 1976) and the background and large-scale magnetic

fields (Stenflo, 1976; Howard and LaBonte, 1981 ; Topka et aL, 1982) which cast doubt

on the general applicability of the random walk process to the transport of surface fields.

Sheeley and Harvey (1981) have interpreted their most recent He l 10830 _, observa-

tions of mid-latitude holes in terms of their diffusion and regeneration by the organizing

action of differential rotation. While their model still retains random walk diffusion as

the basic mechanism, apparent growth rates which differ from the canonical value can

be explained. However, differential rotation as an organizing force has obvious limi-

tations when applied to the equatorial coronal holes whose boundaries rotate rigidly

(Timothy etaL, 1975; Wagner, 1975).

An alternative approach would be to supplement the Leighton mechanism by

adopting the suggestion of Marsh (1978). He showed that the interaction of ephemeral

region s (ER) with elements of the supergranulation network could increase the apparent

rate of magnetic diffusion, measured over large scales, by superposing large discrete

changes upon the random walk mechanism. The changes have the characteristic length

of the ER pole separation and by integrating over their observed size spectrum Marsh

obtained a value for D of 830 km 2 s - _. This is close to the value required to explain

coronal hole growth and therefore ERs might be expected to play a role in their

development.

Inspection of the X-ray images of the Skylab coronal holes (see, e.g., Zombeck et aL,

1978) suggests that coronal holes are formed with few X-ray bright points (XBP), the

X-ray analogue of an ephemeral region, within their boundaries but that their number

increases on successive appearances of the hole. To quantify this impression and to

amplify our knowledge of the formation and development of coronal holes, we have

sought answers to the following questions. (1) Is the evolution of coronal holes accom-

panied by an increase in the bright point areal density? (2) Do coronal holes form in

regions where the bright point areal density is enhanced? (3) Is the bright point areal

density related to changes in the growth and/or decay of coronal holes?
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2. Analysis and Results

X-ray bright points (XBPs) are tracers of the emergence patterns of small scale activity.

They are clearly identified, discrete sites of emerging magnetic flux with a relatively high

frequency of occurrence. They possess two other characteristics which are important

for a statistical study; namely, they are shortlived with a mean lifetime of 8 hr and they

possess a wide latitude distribution which is not restricted to the active region zone

(Golub et al., 1974). Although a more detailed analysis of the observations suggest that

their latitude distribution during the period of the Skylab studies was bimodal (Golub

et al., 1975), the current study is restricted to the near-equatorial latitudes over which

their distribution is approximately fiat. Consequently, it was not considered necessary

to correct for non-uniformities in the bright point latitude distribution and an equal

weight is attributed to the occurrence of an XBP anywhere within a coronal hole.

The coronal hole set used for the study is based on the Skylab atlas prepared by Nolte

et al. (1976). Six X-ray holes were identified. Of these two have been excluded from the

following analysis because they document only the final stages of the hole's existence.

The excluded holes are, in the standard nomenclature, CH5, which was observed only

during the first rotation, and CH3. The latter, although visible on three rotations,

appeared as a badly fragmented extension of the northern polar hole which is consistent

with its identification by Timothy et aL (1975), using Fe xv observations, as the remnant

of a hole formed at least seven rotations before being observed from Skylab. Of the

remaining holes CH 1 also connects, at times, to the northern polar hole. When this
occurs the measurements have been restricted to latitudes below 40 N. The restriction

is designed to remove any influence that the northern polar hole, which was a continuous

but evolving feature during the Skylab period (Bohlin, 1977; Sheeley, 1980), may have
on the data.

To maximize the statistics of each XBP observation, the longest exposure (256 s)

through the long wavelength filter (3-32; 43-54 A bandpass) was used to count the

bright points. In the following analysis these numbers will be compared with a global

bright point average based on the statistics of Golub etal. (1976) which reflect the

number of XBPs observed on a 4 s exposure. Different exposures are used because of

the difference in visibility of bright points when observed against backgrounds of either

the weakly emitting, large scale structure or emissionless, coronal holes. To remove any

bias introduced by the background, bright points are generally counted using an

exposure which is short enough to suppress the emission from the large scale structure

and which for the Skylab instrument was 4 s. This of course reduces the number of

XBPs which are observed and increases the statistical uncertainty in any single
observation.

In this study we are counting bright points only in coronal holes where the obscu-

ration is negligible and are therefore free to use the longest available exposure to

maximize the number of counts and minimize the statistical variations. When the two

data sets are compared the observations have been normalized following the procedure

of Golub etal. (1974). They demonstrated that as the exposure was lengthened the
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number of XBP observed increased, asymptotically approaching a value ten times that

on a 4 s exposure at 256 s. This result suggests that all XBPs belong to the same size

distribution and that at the longest exposure all the bright points are being seen.

Therefore the numbers of bright points observed on the 256 s exposures should be the

total number. The numerical values of bright point areal density quoted in this paper

will always refer to this total number. When comparisons are made, the bright point

averages of Golub et al. (1976) have been normalized to correspond to the same total
number.

The simplest procedure for our study would be to straightforwardly count the numbers

of XBPs within each hole. However, since the area of each hole changes considerably

from one rotation to the next, we have instead determined the number of bright points

per unit area. This areal density has been obtained by measuring both the area of the

coronal hole and the average number of XBPs it contains at central meridian passage.

To improve the precision of the areal measurements an average coronal hole area was

derived from nine observations made at approximately 12-hr intervals between + 48 hr

of CMP, when suitable images were available. The bright point average was based on

five counts made over the same period but at 24 rather than 12-hr intervals to allow the

points in the earlier sample to decay below the visibility threshold. The longer interval

between observations is necessary because the bright point lifetime is a function of the

exposure and increases to 15 hr at 256 s. The 24-hr interval between bright point counts

was chosen as a compromise between the need to obtain as many measurements as

possible but to have the measurements statistically independent.
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Of the questions posed in the introduction, the first, namely, whether there exists an

increase in the bright point areal density within coronal holes as a function of time, is

most easily answered. CH 1 was investigated first and the results are shown in Figure 1.

The open circles show the bright point areal density measured at each central meridian

passage; the error bars represent only the statistical uncertainty in the number of points.

Over the six-month interval the bright point density shows a steady increase with no

apparent correlation with either the area of the hole, which varies considerably from

rotation to rotation (broken line), or its rate of change. A least squares fit to the XBP

data produces the solid line shown which has a correlation coefficient of 0.88.

Of the remaining holes in the data set, two, CH2, and CH4, last for more than 3

rotations. The same analysis was applied to these holes and produced similar results

(Figure 2 and 3). In all three cases as the hole evolves, the bright point areal density,

and therefore the rate of new flux emergence increases linearly, reaching several times

its initial value before the coronal hole loses its identity.

The initial density and rate of increase for the four measured holes are summarized

in TableI. The first observation of CH1 had a measured areal density of

1.6 x 10- Jo km 2. However, CH1 had existed for at least two rotations before it was

observed by Skylab (Bohlin, 1977). Using the least squares fit to extrapolate over these

two rotations, we obtain an estimated value of 1.16 x 10 - 1o km - 2 for the initial density.

For CH6, which was the only hole to actually be observed forming on the disk, the initial

density, which is the highest of the four, is the average value measured over the first three

days of its existence.
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TABLE I

X-ray bright point data

Coronal hole Bright point density XBP km- 2 Rate of increase

identification XBP day - i km - 2

Initial Global average

CHI* 1.16 x 10 -I° 0.90 x 10 -1° [.14 x 10 -t2

CH2 0.41 × 10 -1° 0.95 x 10 -l° 1.17 X 10 -12

CH4 1.43 x I0- 1o 1.14 x 10- 1o 1.67 x 10- 12

CH6 1.65 × 10- to 1.61 × 10- to _

Mean 1.16+0.54x 10 1o 1.15_+0,32x 10 -I° 1.33_+0.30x 10 12

* Values for CHI have been extrapolated back two rotations.

d

To determine whether holes form in regions which are characterized by an enhanced

bright point areal density, it is necessary to establish a global average for use as a baseline

against which the initial densities can be compared. During Skylab the number of bright

points on the Sun at any instant of time ranged from 400 + 90 to 1200 + 160 (Golub
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etal., 1976). The average is usually taken as 500 corresponding to an areal density of

8.3 x 10- _' km- 2 However, the bright point statistics suggest an excess within the

equatorial latitudes (Golub et al., 1975). The excess is such that two thirds of the bright

points lie between +30 ° latitude. Consequently, an average areal density of

1.1 x 10 - ,o km - 2 is more appropriate for the region containing the equatorial coronal
holes.

To compare the data against a single global average is questionable because it makes

no allowance for the wide variation in the average bright point number over this period.

Therefore, we have attempted to construct a more realistic average which reflects the

temporal variation of the bright point density and allows one to assign a value to the

density existing at the actual time of the formation of the coronal hole. Since the

individual observations are restricted to a single hemisphere, the global average has been

calculated in the form of a 360-degree running mean using the data set of Golub et aL

(1976). They compiled averages of XBP observed between latitudes 30: N and 30- S

in 10 ° longitude intervals on 4 s exposures. The data have been normalized as described

earlier and a 36-point or 360 ° running average computed. The eight-month curve is

reproduced in Figure 4. Each point is centered on the position of the CMP of the

particular Carrington longitude interval and the data are displayed as number per unit

area so that they can be compared directly with the results from the earlier analyses.

It can be seen that the temporal variation is aperiodic with a magnitude ranging between

0.72 x 10 - ,o km - 2 to 1.71 x 10- _okm- 2 There are at least two distinct episodes of

enhanced bright point emergence; however, the central meridian passages of the coronal

holes appear to fall randomly across the distribution.

Comparison of the initial bright point density with the corresponding global average

(Table I) shows that they are essentially identical, and one concludes that there is no

evidence for coronal hole formation in regions where the small scale flux emergence is

either enhanced or reduced. This conclusion is based, however, on only four data points
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30 N and 30 S and normalized to include all the points visible on the longest X-ray exposure (256 s). The

CMPs of the four coronal holes are indicated.
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of which one point (CH 1) is based upon a linear extrapolation of the data. The validity

of this extrapolation is open to question, since the detailed behavior of the XBP

distribution prior to 28 May, 1973 is unknown, with one exception. The exception was

a rocket flight which occurred on 8 March, 1973 (Davis and Krieger, 1982) precisely

three rotations (81 days) before the first observed CMP of CH1. The corresponding
global bright point density for this observation was 0.95 x 10 - 1okm - 2 which is similar

to the density observed at the start of the Skylab period. Therefore the data are

consistent with a constant level of XBP emergence over this period, which justifies the

use of the extrapolation.

Finally, by subtracting the global background evaluated at the time of the coronal

hole's CMP, a set of points are obtained which give the density excess above the global

average. These points can be used to repeat the evolutionary study of the areal density.

Apart from an offset, neither the corrected points nor the slopes of the fitted lines exhibit

any but minor differences when compared to the original data (Figure 3). This implies

that a global variation can be ruled out as being responsible for the steady increase in

bright point density found within coronal holes.

3. Conclusions

From a study of the association between X-ray bright points and coronal holes, a linear

relationship has been discovered between coronal hole evolution and the emergence of

small-scale magnetic flux. The relationship has the form of a steady growth in the

emergence of the small scale flux which is maintained throughout the hole's life and

reaches levels 3 to 4 times the global average before the hole disappears. Our analysis

has ruled out global variations in the bright point emergence patterns as an explanation

of this result, which imples that this is a local property of the longitude region which

contains the coronal hole. We also found that the initial appearance of coronal holes

with an apparent absence of bright points within their boundaries is misleading. Instead

the data indicate that coronal holes are born in regions where the XBP density is not

suppressed below the global average. In fact, the data show a very slight excess in the

rate at which the magnetic flux is emerging. The first result supports and extends the

work of Nolte etal. (1978b), who found that the number of XBP located near the

boundaries of coronal holes also increased as the hole aged.

In the introduction the need for modifying Leighton's model of random walk diffusion

in order to explain the rate of growth of coronal holes was described and Marsh's

hypothesis (1978) was identified as a candidate for this role. If his hypothesis is valid,

one would expect to find a relationship between bright point density and the rate of

change of coronal hole area. To test for the latter a comparison between the long term
average rate of change of coronal hole area, defined as the difference in area measured

on subsequent rotations, and the areal density was made. A scatter plot constructed

from the data from all the holes had a random appearance indicating the poor correlation

(r _ - 0.3) between the two variables. Before dismissing Marsh's hypothesis we should

realize the limitations ofthe present study. Only time-averaged data have been used, and
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the averaging period is long compared to bright point life times. Although the use of

long-term averages for studying the rate of change of hole area was justified by Nolte

et aL (1978a), who found excellent agreement between short (~ 2 days) and long-term

rates of change, there may be subtleties which have been missed, for instance, perhaps

only bright points close to the boundary influence the growth rate. Unfortunately, the

present data are insufficient to test this hypothesis.

To summarize the answers to the three questions posed in the introduction, we have

found that the evolution of coronal holes is accompanied by a substantial increase in

the bright point density, but this increase is not related to the rates of growth or decay.

The statistical evidence provides only weak support for the formation of coronal holes

in regions of above normal bright point density. Where it is possible to study the

formation of a hole in detail, as in the case of CH6 (see Solodyna et aL, 1977, Figure 3),

a bright point is present at, or close to, the birth of the hole. This could be a random

associat.ion, and since the subsequent changes in coronal hole area are not directly

coupled to the small-scale flux emergence, our observations suggest that the XBP acts

only as the catalyst which triggers the birth of the coronal hole within a larger region,

in which the conditions for hole formation have been preset by a systematic, widespread

mechanism (Frankenthal and Krieger, 1977; Nolte et al., 1978a).
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Abstract. We measured the average soft X-ray emission from coronal holes observed on images obtained

during AS & E rocket flights from 1974 to 1981. The variation of this emission over the solar cycle was then

compared with photospheric magnetic flux measurements within coronal holes over the same period. We

found that coronal hole soft X-ray emission could he detected and that this emission appeared to increase

with the rise of the sunspot cycle from activity minimum to maximum. Our quantitative results confirmed

previous suggestions that the coronal brightness contrast between holes and large-scale structure decreased

during this period of the cycle. Gas pressures at the hole base were estimated for assumed temperatures

and found to vary from about 0.03 dyne cm 2 in 1974 to 0.35 dyne cm 2 in 1981. The increase in coronal

hole X-ray emission was accompanied by a similar trend in the surface magnetic flux of near-equatorial holes

between 1975 and 1980 (Harvey etal., 1982).

1. Introduction

Coronal holes were first and most easily identified in soft X-ray and XUV images as

regions of very low brightness in comparison to surrounding active regions or other

large-scale structures. They were first studied in detail during the Skylab period and their

observational characteristics at that phase of the solar cycle were well established. These

characteristics included nearly rigid rotation, large, low-latitude extensions of polar

holes, near-zero X-ray emission and a strong correlation between the low-latitude

portions of holes and high speed solar wind streams (Krieger et al., 1973 ; Nolte et al.,

1976; Zirker, 1977; Sheeley and Harvey, 1978, 1981). Also during this period a nearly

one-to-one association was established between coronal holes and regions of open field

lines derived from potential magnetic field calculations using observed photospheric

line-of-sight fields (Altschuler and Newkirk, 1969; Levine, 1977, 1982). However, it has

been suggested that these relationships are less clear during other parts of the cycle. For

instance, Levine (1977, 1982) showed that during Skylab and around solar maximum

open fields also emanate from active regions, and Nolte et al. (1977) and Sheeley and

Harvey (1978, 1981) showed that during solar minimum and the rise to maximum of

cycle 21 there were solar wind sources that could not be identified with low-latitude
coronal holes.

Since the Skylab mission, ground-based HeI 10 830 ]_ images have been used (e.g.,

Sheeley and Harvey, 1978, 1981) for determining coronal hole positions and areas and

their relationships to solar wind speeds and geomagnetic activity indices. In addition,

rocket flights have provided us with high resolution, full-disk solar X-ray images at

Solar Physics 102 (1985) 177-190.
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approximately 18-month intervals. At AS & E these images have been used in a program

to study the evolutionary characteristics of coronal holes over the solar cycle, including

the degree of their correspondence to open field configurations. As part of this program,

Kahler et al. (1983) compared coronal hole boundaries determined from both AS & E

X-ray and Kitt Peak 10830 A, images. During their study, they found what appeared

to be a decrease in the brightness contrast between the coronal holes and large-scale

coronal structure in the period after 1974. Such a 'weakening' of holes was also observed

in the 10830,_, data alone during 1976-1977 by Sheeley and Harvey (1978). Also,

Levine (1982) determined that the association between predicted open magnetic

structures and 10830 A coronal holes was less clear after the Skylab period.

Finally, Harvey et al. (1982) found that low-latitude coronal holes contained three

times more flux near sunspot maximum than near minimum even though their areas were

comparable. Taken together, these results suggest that thedistinction in terms of open

and closed fields between coronal holes and large-scale structure is not always as clear

as during the declining phase of solar cycle 20.

This paper describes the next phase of our program, the photometric analysis of the

soft X-ray energy flux from coronal holes from 1974 to 1981 and the comparison of this

flux with measurements of photospheric magnetic field strength. We have addressed two

questions: (1)In terms of apparently contradictory results using Skylab X-ray data, is

X-ray emission from coronal holes detectable above background, and if so does it vary

over the solar cycle? (2) Can a change in the plasma conditions within low-contrast

coronal holes explain the difference in visibility, and are these conditions in turn related

to the increased photospheric field strength found in the coronal holes of the new cycle?

2. Observational Analysis

Our approach to this study involved three phases. First, we selected those X-ray images

which most clearly showed coronal holes for calibration and measurement of hole

emission. The minimum average energy flux within the coronal hole boundaries as

determined by Kahler et al. (1983) was measured and variations in this emission over

the solar cycle were examined. Second, the average magnetic field strength within the

same X-ray coronal hole boundaries was measured. Finally, the X-ray and magnetic flux

measurements were compared to each other and to the magnetic flux measurements of

Harvey etal. (1982).

2.1. CALIBRATION AND ANALYSIS OF THE X-RAY DATA

Since Skylab, full-disk soft X-ray images of the solar corona have been obtained on

seven AS&E rocket flights in 1974, 1976, 1978, 1979, and 1981. Kahler etal. (1983)

provided details on the dates, times, and instrumentation of the flights (except for

17 November, 1976). Images on these flights were obtained with two mirror systems,

a Kanigen metal mirror and a fused silica mirror. To minimize the relative uncertainties

between flights and the background from scattering effects, we restricted our analysis

to images obtained with the fused silica mirror and through aluminized polypropylene
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TABLE I

Selected X-ray images and magnetograms

17 _)

X-ray images Time Carrington CR" Mt. Wilson Kitt Peak

(UT) rot. daily maps b synoptic maps

27 June, 1974 1948 1616 6 26 June; 1456 No

27 June; 1652

28 June; 1715

17 Nov., 1976 1827 1648 32 16 Nov.; 1659 No

17 Nov.; 2243

18 Nov.; 1751

31 Jan., 1978 1841 1664 16 3t Jan. Yes (gap)

1 Feb.; 1846

13 Feb., 1981 1916 1705 41 14 Feb.; 2326 Yes

" The interval in Carrington rotations betwen rocket observations. ]'he 1974 observations occurred six

rotations after Skylab.

b Times are UT at the midpoint of the mapping interval.

TABLE II

X-ray energy flux in coronal holes

Date Coronal hole PP exposure Average Net intensity

subareas time (s) PDS density (erg cm - 2 s - _)

27 June, 1974 Large hole: 19.7 21.6 _+ 1.2 2.2 -+ 0.8 x 10 3

center 59.2 32.6 +_2.2 2.1 -+ 0.7 x 10 3

Large hole: 19.7 19.5 _+0.8 1.7 + 1.3 x 10 - 3

northwest 59.2 27.8 + 1.9 1.4 _+0.5 × 10 3

North polar hole 19.7 21.0 + 2.1 2.1 + 1.6 x 10 3

59.2 30.3 _+4.1 1.8 + 1.2 x 10- 3

17 Nov., 1976 Equatorial 3.7 13.0 _+0.7 7.5 + 3.3 x 10 3

extension of SPH 16.5 18.8 -+ 1.2 5.6 _+2.0 x 10 - 3

South polar hole 3.7 12.6 _+0.8 6.4 -+ 3.0 x 10 -3

North polar hole 16.5 17.4 + 1.1 4.6 _+ 1.7 x 10 -3

3.7 13.5 +_0.8 8.3 _+3.8 x 10 3

16,5 19.7_+ 1.3 6.1 +2.2x 10 -3

31 Jan., 1978 Southwest hole: 2.6 18.6 -+ 0.9 1.7 +_0.9 x 10 2

center 8.7 25.8 -+ 1.3 1.6 _ 0.9 x 10 z

Southwest hole: 2.6 18.1 +_ 1.0 1.6 -+ 0.8 x 10 -'

limb 8.7 25.4 _+0.8 1,5 _+ 0.9 x 10 2

13 Feb., 1981 Southern hole: 2.8 24.3 _+ 1.4 1.5 _+ 1.2 x 10 t

limb 9.6 39.2 _+ 1.6 1.3 _+ 1.0 x 10

Southern hole: 2.8 26.6 _+ 1.7 1.8 _+ 1.3 x 10 t

center 9.6 41.8 +_ 1.5 1,5 _+ 1.2 x 10
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Fig. 3. Overall comparison of the magnetic field strength and X-ray flux of coronal holes from 1974 to 1981.

(a) Semi-log plot of magnetic field strengths from Kitt Peak synoptic maps within 10830 A coronal hole

boundaries from 1975 to 1980 (from Table I of Harvey et al., 1982). Points joined by vertical lines represent

measurements of different holes made during the same month. The crosses indicate the averaged Mt. Wilson

measurements for the X-ray equatorward holes (see text). (b) Semi-log plot to the same timescale as (a)

of the X-ray energy fluxes of the Skylab and rocket coronal holes listed in Table II. For each flight all of

the measurements have been averaged together and plotted as a single point. Each error bar is a simple

average of the measurement uncertainties for each flight.
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(PP) and beryllium (BE) filters. The passbands of the PP filters used in these flights are

similar to Filter 3 used with the Skylab S-054 instrument (Vaiana et al., 1977) to study

coronal holes. Table I lists the dates, times, and Carrington rotations of the X-ray data

from the four rocket flights analyzed for this study*, and the dates and times of the

magnetogram data we used. Representative PP images from the four flights are shown

in Figure 1 and the X-ray coronal hole boundaries from Kahler etal. (1983) are

reproduced in Figure 2 to the same scale. The 17 November, 1976 boundaries, though

not included in their paper, were drawn by Kahler et al. during their analysis. Their 1976

and 1981 boundaries compare favorably with those determined independently by Nolte

et al. (1977) and Webb et al. (1984), respectively.

To determine coronal plasma parameters, the X-ray photographic density images

must be calibrated and reduced to arrays of energy flux deposited on the film plane.

Details of the reduction and calibration of the rocket images are discussed by Davis and

Webb (1985). Since the rocket images were obtained with the same film emulsion,

Eastman Kodak SO-212, used with the AS&E Skylab telescope, we followed the

general calibration procedures developed for the Skylab analysis (Vaiana et al., 1977).

Each flight image was scanned with AS& E's PDS microdensitometer to produce a

digitized density array with 20 micron pixels, equivalent to 2.8 arc sec spatial resolution.

Because of difficulties with laboratory calibration of the wavelength dependence of the

X-ray sensitivity of SO-212 film, we used a synthesized calibration procedure based on

the image data themselves (cf. Maxson and Vaiana, 1977) to provide absolute energy

calibrations for each flight. The uncertainties in the film calibration lead to relatively

large error ranges in the measured coronal hole energy fluxes. However, as we will show,

our results still provide meaningful limits on the cyclical dependence of energy flux from
coronal holes.

Subareas were chosen to encompass areas of minimum brightness in the holes and

are indicated on Figure 2 by the boxes labelled 'C'. These subareas were carefully

chosen to exclude regions of brighter diffuse emission and bright point-like features

within each hole boundary, and to be distant from active regions so as to minimize

scattering effects. Generally the average density and statistical error at at least two

subareas per hole and on two adjacent PP images was measured. The resulting average
X-ray intensities and uncertainties derived for the coronal hole subareas shown in

Figure 2 are listed in Table II.

In Figure 3(b) the X-ray coronal hole flux measurements are presented as a function

of time over nine years of solar cycles 20 and 21. The two 1973 points are averages of

the two sets of published Skylab X-ray measurements of the emission from coronal

holes. The first point is the average of six measurements of two areas in Coronal Hole 1

(CH 1) made in August 1973 using two low-density calibration methods (Maxson and

Vaiana, 1977). The second point is the average of three measurements of the emission

* Although small coronal holes were visible on the day of our rocket flight on 7 November, 1979 (see
Figure 4 in Webb et al., 19841,that data could not be used for this study because scattered radiation from
a flare precluded photometric measurements in faint areas.



THE CYCLICAL VARIATION OF ENERGY FLUX 183

from CH 6 shortly after its birth on the disk in October 1973 (Solodyna et al., 1977).

From 1974 to 1981 the X-ray measurements for each rocket flight in Table II have been

averaged together and plotted as a single point. This procedure is justified because the

uncertainties of each point are larger than the variations of the intensities between

exposures or among the different coronal holes observed on each flight.

A clear trend in the X-ray emission is apparent. The coronal hole emission in 1973,

1974, and 1976 was similar and low, but rose to a maximum in 1981. Examining only

the rocket data, average coronal hole emission was lowest in June 1974, a factor of 3

higher in November 1976 near solar minimum, and a factor of 8 higher in January 1978.

The emission from the large southern hole in February 1981 near solar maximum was

an order of magnitude higher than in 1978, although with larger uncertainties due to the

film calibration and possible scattering problems.

We derived gas pressure from the average coronal hole X-ray intensities using the

technique developed by Kahler (1976). This method is applicable over the temperature

range where a single filter's response is temperature insensitive. Therefore, the method

is especially useful when the plasma temperature and density cannot be uniquely

determined, as in our case. For the fused silica mirror the pressure, in dyne cm 2, is

given by:

p2 = 3.49 x 10- 14 li/L_,

where I; is the focal plane intensity through filter i in erg cm - 2 s l, L is the pathlength

in cm, and :t is a function of the assumed filtered solar spectrum, corrected for film

speed, and T 2. For L we assumed the constant density scale height of 6.5 x 109 cm

derived by Vaiana et al. (1973) for an X-ray coronal hole observed in 1970. Table III

presents the results for the PP images from each rocket flight under two temperature

assumptions. Column 2 shows the hole pressures for an assumed constant temperature

of 1.3 × l0 b K, i.e., the barometric temperature for the 1970 coronal hole (Vaiana et al.,

1973). In column 4 are given the pressures derived using an average value of _ over the

full temperature range over which the PP filter is temperature insensitive to within

+ 33% (for the rocket PP filter this occurs from 0.7 to 5 x 106 K). Pressures derived

TABLE IlI

Derived coronal hole pressures a

Date P (1.3 × 106 K) b AP (above P ((_t(T)) )b AP (above

(dyn cm-2) 1974 level) (dyn cm 2) 1974 level)

Skylab 0.050 1.8 0.029 - 0.081
(0.9 < T6 > 3.0)

1974 0.027 _+0.003 - 0.031 _+0.004 -

1976 0.054 + 0.003 2.0 0.063 + 0.003 2.0

1978 0.078 + 0.008 2.9 0.090 + 0.010 2.9
1981 0.310 _+0.068 11.5 0.352 _+0.072 11.3

a For an assumed density scale height of 6.5 x 109 cm.

b The uncertainties represent the ranges in pressures due only to the uncertainties in the film calibration.
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by Maxson and Vaiana for Skylab CH 1 are given as a reference. Shown in columns 3

and 5 are the ratios of the hole pressures with respect to 1974, showing a tenfold increase

between activity minimum and maximum.

2 dl (Vaiana et al., 1977), from theWe also estimated the emission measure, _ ne

average coronal hole intensities. We assumed a constant T e -- 1.3 x 106 K and derived

average emission measures ranging from about 4 x 102s cm -5 in June 1974 to

5 x 102_ cm- s in February 1981. The values derived from the average hole intensities

for 1974, 1976, and 1978 are within a factor of 3 of the emission measure at 1.3 x 106 K

for CH 1 of 1.3 x 1026 cm-s (Maxson and Vaiana, 1977).

Because coronal hole fluxes are very small, an understanding of the X-ray calibration

and reduction procedures is important. Of particular concern in X-ray measurements

are scattering effects arising from surface roughness of the mirrors, which can contribute

an important source of background 'noise'. Thus, our decision to make no corrections

for scattering in our analysis must be justified. In analyzing the Skylab data, Maxson

and Vaiana concluded that CH 1 had significant emission over background. They made

no corrections for scattering, claiming that such effects were minimized by choosing

subareas far from bright sources, and because CH 1 had a large area and cross sections

through the hole revealed flat-bottomed profiles inconsistent with scattering effects. To

the contrary, Solodyna et al. (1977) estimated significant scattering contributions from

individual sources and concluded that the CH 6 emission after its development 'was

consistent with zero within our assessment of the experimental uncertainties'. However,

unlike CH 1, CH 6 at the time of Solodyna et al.'s measurement was a very small hole

surrounded by large-scale structures (LSS) and active regions, and flaring occurred in

a limb region during some of the observations. Like Maxson and Vaiana we attempted

to minimize the effects of scattering by choosing subareas away from bright regions and

checking cross-sectional profiles through the holes. More importantly, we only used

rocket data obtained with the fused silica mirror, which has improved scattering

characteristics compared with the Skylab mirror (Davis et al., 1977). For instance, the

scattering is substantially reduced at shorter wavelengths and is nearly wavelength

TABLE IV

Contrast ratios:

diffuse coronal emission / coronal hole emission

Date Ratio

21 Aug., 1973 a 8.4 + 1.2 b

27 June, 1974 11.1 +6.8

17 Nov., 1976 5.4 + 3.0

31 Jan., 1978 3.5 + 2.8

13 Feb., 1981 3.0 +_3.2

Skylab from Maxson and Vaiana (1977). The

ratio of the LSS emission from their region 'D'

divided by the emission from CH 1.

b The errors are the statistical errors of the ratios

of the uncertainties discussed in the text.
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independent. It must be emphasized that neither the Skylab nor rocket coronal hole

measurements include the effects of systematic errors which might arise from

uncertainties in the calibration data, including the wavelength dependence of film aging,

and the absolute source spectrum.

We measured average intensities of diffuse background coronal subareas as a means

of comparing the coronal hole flux variations with overall cyclical variations in coronal

plasma conditions and to cross-check the data from each rocket flight. These subareas,

labelled 'Q' in Figure 2, were chosen to include large-scale areas of minimal coronal

emission on the disk away from coronal holes, active regions and bright LSS. For each

image these subareas were averaged together and compared with the averaged coronal

hole fluxes plotted in Figure 3(b). Table IV shows for each date the coronal contrast
ratio between the diffuse emission and the coronal hole emission. This ratio decreased

from 1974 to 1981, thereby quantitatively confirming the previous suggestions from both

X-ray and 10830_, observations that the brightness 6ontrast between holes and

large-scale structure decreased during the rise to solar activity maximum.

2.2. ANALYSIS OF THE PHOTOSPHERIC MAGNETIC FIELD STRENGTH DATA

In the next phase of the analysis we compared as a function of time the X-ray emission

and the photospheric magnetic flux density from the coronal holes, using the boundaries

determined by Kahler et al. (1983). For the magnetic field data we used daily averaged

magnetic flux maps from Mr. Wilson Observatory and Kitt Peak synoptic flux maps

constructed for each Carrington rotation (Harvey etal., 1980). Table I lists the dates

and times of the Mt. Wilson magnetograms. Kitt Peak data were not available for long

periods around the dates of the rocket flights in 1974 and 1976, and contained a

three-day gap centered on 31 January, 1978, the date of the third flight. However, the

Mt. Wilson daily maps were available on or within one day of each of the four rocket

flights analyzed. To check for day-to-day variations in the maps, we required maps on

the day of the flight, the day before and the day after. However, for the 1978 flight only

maps on the day of the flight and the day after were available, and in 1981 only one map

was available on the day after the flight. Fortunately, good Kitt Peak data were obtained

for the 1981 period.

We obtained the Mt. Wilson data in the form of averaged pixels in Gauss integrated

over 34 x 34 equal intervals of sine longitude and sine latitude, therefore representing

large area averages of flux density. The magnetograph measures the longitudinal

component of the photospheric field in the 5250,_ line of Fel. Because of line

weakening, the values measured are on the order of a factor of two too low, although

the magnitude of this effect varies across the disk (Howard and Stenflo, 1972). Our

results were corrected for this effect and for foreshortening as described below.

We obtained the Kitt Peak synoptic maps in the form of digitized equal-area pixels

in Gauss of one degree longitude by (1/90) unit of sine latitude of the mean field strength.

The data were obtained with the 512-channel magnetograph which measures the

longitudinal field in the 8688 _, line of Fel and requires no correction outside of
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sunspots. Where necessary a cosine weighting function in longitude has been applied

to the synoptic data to merge it across daily data gaps.

We selected rectangular subareas on the magnetic maps that corresponded spatially

with the coronal hole subareas in which the X-ray measurements were made. These

subareas are shown by the dashed outlines on Figure 2. For the 1976 and 1981 data

the subareas coincided with the X-ray subareas, but for 1974 and 1978, we used single

large subareas to increase the statistical accuracy of the measurements. Because of the

large area of the holes in 1974 and 1978 and the coarse spatial resolution of the

Mt. Wilson data, we feel that the integration of the X-ray and magnetic data over

dissimilar areas did not significantly effect the results. The results of our analysis of the

coronal hole magnetic field strengths are given in Table V. The table lists the dates and

subareas measured in terms of the X-ray coronal hole designations used in Table II.

TABLE V

Average magnetic field strength in coronal holes

Date Coronal hole Pola- Obser- Net 0c

subareas rity vatory B r (G) (deg)

26 June, 1974 Large hole: center + MW daily + 2.87 14.5

27 June, 1974 Large hole: center + MW daily + 3.06 19

28 June, 1974 Large hole: center + MW daily + 2.88 31.5

16 Nov., 1976 Equatorial ext. - MW daily - 2.51 27.6

17 Nov., t976 Equatorial ext. - MW daily - 3.23 34.8

17 Nov., 1976 South polar hole - MW daily -3.68 59.8

17 Nov., 1976 South polar hole + MW daily -0.34 59.8

18 Nov., 1976 Equatorial ext. - MW daily -4.53 44.5

31 Jan., 1978 Southwest hole - KP synoptic - 1.28 (55) a

31 Jan., 1978 Southwest hole - MW daily -2.23 64.6

1 Feb., 1978 Southwest hole - MW daily - 0.80 68.4

13 Feb., 1981 Southern hole: limb + KP synoptic + i.55 (58)"

13 Feb., 1981 Southern hole: center + KP synoptic + 5.60 (40)"

14 Feb., 1981 Southern hole: limb + MW daily +4.50 66.4

14 Feb., 1981 Southern hole: center + MW daily + 5.74 40.1

" The average longitudes for the coronal hole locations on the Kitt Peak maps are estimates only.

Column 3 gives the known polarity of the hole as determined by H:t synoptic charts in

Solar-Geophysical Data and the magnetic field/solar wind observations of Sheeley and

Harvey (1981). With one exception (i.e., the north polar hole on 17 November, 1976)

the measured polarities agreed with the expected ones.

The average longitudinal field strength B,,, for each hole subarea was calculated by

computing the algebraic sum of all pixels within the chosen subarea and dividing by the

number of pixels. The Mt. Wilson data were then corrected for line weakening and

foreshortening by using the form given by Howard (1977) to derive the 'true' field

strength Br :

0.48 + 1.33 cos0
Br = Bm

cos 0
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where 0 is the great-circle distance from Sun center to the center of the subarea. In

Table V the value B_. is given in column 5 and 0in column 6. In addition, the June 1974

Mt. Wilson measurements were increased by 20')0 to account for a change in the

magnetograph aperture in 1975 (R. Howard, private communication). The Kitt Peak

synoptic data are already corrected for the longitude projection effect, so we applied a

latitude correction of the form B c = B,,,/cos O. The Mt. Wilson and Kitt Peak measure-

ments within the February 1981 hole equatorial extension suffer least from fore-

shortening and agree with 3.°,'0.

Harvey et al. (1982) used Kitt Peak synoptic images to determine the magnetic fluxes

in thirty-three 10830 ,& coronal holes from 1975 to 1980. They' only analyzed holes

below a latitude of 50: and made no corrections for projection effects. In Figure 3(a)

we have plotted their field strength data from their Table I. This plot illustrates their

result that during this phase of solar cycle 21, low-latitude holes contained three times

more flux near activity maximum than at minimum.

The corrected Mt. Wilson flux values (Br) shown in Table V for the days centered

on the rocket flights have been averaged together and plotted as crosses on Figure 3(a).

We included the single Mt. Wilson measurement on 14 February, 1981 the day after the

rocket flight. One of the Harvey etal. measurements (coronal hole No. 18 on

19 October, 1976) was from the southern equatorial extension that we measured one

rotation later on 16-18 November, 1976. Our averaged measurement for this hole of

- 3.4 G agrees favorably with their value of - 2.7 G. In general, our coronal hole fluxes

are consistent with the trend of the Harvey et al. data (note: the 1978 value was subject

to considerable foreshortening).

3. Discussion

We now summarize our observational results in terms of the questions posed in the

Introduction. First, we conclude that the rocket results confirm earlier Skylab results

that detectable X-ray emission arises from coronal holes. In addition we find that this

emission appears to increase as the cycle evolves from activity minimum to maximum.

One can take the view that despite the uncertainties arising from differing calibration

procedures, and the diversity in coronal hole area, location on the disk and evolutionary

characteristics, the four independent data sets from 1973 to 1976 reveal remarkably

consistent X-ray hole emission values varying over this period near sunspot minimum

by only about a factor of three. The 1974 rocket measurements are also consistent with

Solodyna et al.'s (1977) measurements of CH 6 made only 8 months earlier. However,

when the data over this entire 9-year period of the solar cycle is examined, the observed

X-ray coronal hole emission appears to vary roughly with the sunspot cycle, reaching

minimum flux in 1974 just before sunspot minimum*, then increasing through 1981,

about one year after sunspot maximum. Finally, because the rate of intensity increase

* Wecannot rule out that coronal hole emission inOctober 1973(Skylab) and June 1974(rocket) was below
the detection threshold and, therefore, that these values are upper limits.
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of the X-ray hole flux was greater than that of the background flux (Table IV), our

photometric results confirm the qualitative suggestion of Kahler etal. (1983) and

Sheeley and Harvey (1978, 1981) that the brightness contrast between coronal holes and

large-scale structure decreased during the rise to activity maximum.

Figure 3 provides a partial answer to our second question, namely does a relationship

exist between increasing X-ray emission and increasing magnetic field strength from

coronal holes over this period of the cycle? The data of Harvey etal. (1982; our

Figure 3(a)) show an increase of a factor of three in the field strength of near-equatorial

coronal holes between 1975 and 1980. Our calculations offield strength within the X-ray

hole boundaries are sparse but consistent with the Harvey et al. data. The X-ray

emission (Figure 3(b)) shows an increasing trend with the cycle, in general agreement

with the magnetic flux but with greater amplitude. Comparison of these two data sets

over the same time period reveals that they appear to have a power law dependence.

The relationship is such that the coronal hole X-ray intensity, which is proportional to

the gas pressure (Table III), is consistent with being proportional to B 2. Thus, the data

lend support to coronal heating models in which the corona is directly heated by the

dissipation of magnetic energy (e.g., Rosner et al., 1978). We may speculate from our

results that such magnetic heating occurs routinely in coronal holes over the solar cycle.

It is important to attempt to relate the observed change in coronal hole contrast over

the cycle with the degree to which the underlying magnetic fields were open or closed.

We examined two approaches to this question: (1)by directly comparing the location

and contrast of our holes with regions of open fields as deduced from potential field

models, and (2)by examining the interplanetary effects of the low-latitude holes or
extensions of holes observed in our data.

Regarding the first approach, Levine compared regions of open fields with the Skylab

data on coronal holes (e.g., Levine, 1977) and with 10830/k holes observed in 1975 and

1978-1979 (Levine, 1982). However, his comparisons were made during periods when

we had no rocket observations and, therefore, we are unable to make any direct

comparisons. However, our observation of the southern hole extension in January 1978

could be indirectly compared with Levine's (1982) results starting in May 1978. Levine's

Figures 3-6 confirm that this lobe was detected as a strong open field region of similar

size and shape and persisting through the period of Levine's study.

Concerning the second approach, we decided to examine the interplanetary effects

of our holes because of the well-known, strong correlation during Skylab between

low-latitude holes and, therefore, apparently open field regions, and high speed solar

wind streams. In addition, we sought assurance that our holes were reasonably typical

of each epoch with regard to their evolutionary characteristics and effects on the solar

wind. We compared the locations and timing of our low-latitude holes with the Bartels

displays and discussions of Sheeley and Harvey (1978, 1981).

The large coronal hole in June 1974 was the only one in our data which extended over

the equatorial region. This hole evolved from a separate, small equatorial hole during

Skylab (CH 4) to join with the north polar hole by mid-January 1974 (Solodyna et al.,

1975). The Bartels display shows that in June 1974 this hole was midway through its
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lifetime. Through mid-1975 this hole and another of opposite polarity formed a

two-sector structure of strong, recurrent solar wind. These holes, and their associated

wind streams, had a 27-day recurrence period. These characteristics were typical of

equatorial holes observed during Skylab (e.g., Zirker, 1977).

The equatorial extension holes observed on the rocket images on 17 November, 1976

and 31 January, 1978 represented the early development of long-lived, slowly rotating

(28-29 day periods) but weak holes. Sheeley and Harvey (1978) described the 1976 hole

as follows: "Despite its weak appearance, this hole was associated with one of the most

prominent recurrence patterns of high-speed solar wind and enhanced geomagnetic

activity that occurred during 1976-1977." Finally, on 13 February, 1981 the large,

high-latitude coronal hole was embedded in the first new-cycle polarity region (Webb

et al., 1984) and was probably associated with a recurrent wind stream. All of the

near-equatorial X-ray holes were associated with IMF polarity of the same sign (Sheeley

and Harvey, 1981).

Taken together, these facts suggest that these holes were strongly connected with the

interplanetary medium flow by open field lines emanating from the base of the holes.

These indirect comparisons support a general correspondence between open field

regions and the X-ray coronal holes of our study. But the variation of X-ray flux from

coronal holes does not appear to be strongly dependent on the degree of the open field

structures. We hope to extend this inference by directly comparing the X-ray coronal

hole data with open field structures as deduced from potential field calculations.

In conclusion, our limited X-ray results provide evidence for a solar cycle variation

in overall coronal hole emission and gas pressure, which is supported by the qualitative,

but more frequent observations of a 'weakening' or decreased contrast of 10 830 ,_ holes

and an increase in the surface magnetic flux within holes over the same period. The

variation of the coronal pressure is consistent with being proportional to the square of

the magnetic flux, suggesting the importance of magnetic energy dissipation to heating

at the base of coronal holes.
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Abstract

X-ray astronomy, both solar and celestial, requires long focal length optical systems

to provide high spatial resolution images and to be used as feeds for spectrometers. In

typical experimental situations, the physical size is restricted and grazing angles must

be kept at or below one degree. Grazing incidence secondary optics are an alternative to

long focal length primary mirrors. We have designed, fabricated and tested a system which

employs a secondary with externally polished hyperboloid-hyperboloid surfaces. It is to

be used in conjunction with an existing Wolter-I primary. The system has been designed for

high resolution imaging of the solar corona with the goal of producing images electron-

ically with the same spatial resolution as achieved at the primary focus with film. The

secondary optic is located in front of the primary focus, as in a Galilean telescope, and

provides a magnification of approximately four. The combined system has a plate scale of
26.0 _m (arc sec)-, effective focal length 5.4 m, and is contained within an instrument

length of 1.9 m. The design, tolerance specification and fabrication techniques are de-

scribed. The performance of the system at X-ray wavelengths has been determined experi-

mentally and is compared with theoretical results produced by ray tracing.

Introduction

The field of X-ray astronomy has developed rapidly over the past quarter century spur-

red by technical advances in the fabrication of grazing incidence optics. These optical

systems have allowed the study of X-ray emission mechanisms over a range of astronomical

sources from the coronae of stars, including the sun, to supernovae remnants, galaxies and

quasars. Although the structure of many of the more distant sources remain unresolved,

imaging has revealed a wealth of detail for objects which are relatively close (like the

sun) or extend over a large angular extent (e.g., supernovae remnants). In general the

structures that are observed reflect the interaction between a high temperature plasma and

a magnetic field. For the solar corona the visual identification of a diverse population

of coronal structures has provided a new framework for the reformulation of the more clas-

sical concepts of solar physics. However, many of the theoretical descriptions involve

processes which occur over very small spatial scales. Therefore, future advances will

require the acquisition of even higher resolution observations.

In practice the resolution in astronomical observations depends on both the intrinsic

resolution of the optical system and the relationship of the size of the imagelto that of
the detector. In the past nearly all X-ray images have been detector limited even when

the recording medium was photographic emulsion. The situation is worse when solid state

detectors are used. However, for most space missions, electronic imaging has to be used

since there is no opportunity to recover film. Consequently there are strong incentives

for the development of imaging systems, optics and detectors, in which the performance of

each element is optimized for maximum system performance.

When the system angular resolution is limited by the detector, the instrument designer

has produced a mismatch between the instrument's focal length and the dimensions of the

detector pixel. Although efforts continue to improve the latter, electronic detectors are

unlikely to surpass the spatial resolution of photographic film. Therefore it is essen-

tial to simultaneously explore the second factor, namely increasing the focal length of

the X-ray telescope.

To quantify these statements, we establish a requirement for a system spatial resolu-

tion of 1 arc second. If features on this scale are to be resolved, they must subtend an

angle greater than 1 pixel, and we use the quantity of 2_'2_pixel size to define limiting

resolution. Taking the pixel size as 15 microns, the best that is currently available in

CCDs, the instrument focal length would have to be 8.75 m. This results in an instrument

size which is impractical for any but major programs. The solution to this problem in

normal incidence optical systems would be to use secondary optics to increase the effec-

tive focal length, i.e., magnify the primary image. Until recently this approach had not

* Present Address: NASA/Marshall Space Flight Center, Code ES-52

Huntsville, Alabama 35812
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been followed for X-ray imaging because of the difficulties associated with the figuring

of small grazing incidence optical elements and the increased scattering from four reflec-

tions instead of the customary two. However, recent advances in fabrication technology,

in particular in the in-process metrology and the preparation of low-scatter surfaces,

have combined to make their development possible. Consequently, under NASA sponsorship,

we have designed and fabricated a grazing incidence magnifier to be used in conjunction
with an existing grazing incidence primary for solar studies.

Desion considerations

Two options for the design of the secondary magnifier are possible. In the first op-

tion the secondary optic acts as a microscope and is located behind the primary focal

plane. It is known as a converging magnifier and has internally reflecting hyperboloid

and ellipsoid surfaces. The second design places the mirror in front of the focal plane

where it acts as a Barlow lens. This configuration is known as a diverging magnifier and
the mirror has externally reflecting hyperboloid-hyperboloid surfaces .

PRIME FOCUS -I SECONDARY FOCUS
PLATE SCALE 7/+ m (arc sec.) PLATE SCALE

-I

26 _.m (arc sec.)

PRIMARY /oPTiC C VEROIN \
__ ANQLE,2" \ CONVER ,NQ /

ANOLE--3"/

SECONDARY
OPTIC

'i= 1.45m "-i

',= 1.85m '_I

Figure I. Diagram of the design for the grazing incidence relay optic system.

In the present program, the total length of the system is of critical importance be-

cause the telescope will be flown as a sounding rocket payload. For a given object dis-

tance and magnification, the diverging magnifier (Figure I) is the shorter of the two

designs. It was selected for this project. An additional benefit of this design is that

the primary focused X-rays are bent through a smaller angle to reach the secondary focus,

thus minimizing reflection losses and maximizing collecting area.

The design is fixed by choosing the magnification and the object distance (where object

distance is the separation between the principle plane of the secondary and the primary

focus). In practice increasing magnification lowers the system's speed. Increasing object

distance, for a given magnification, lengthens the overall instrument and also increases

the physical size of the polished area. A compromise design was chosenlwhich has a mag-

nification of 3.7, corresponding to a plate scale of 26 _m (arc sec)- while retaining

reasonable exposure times. The object distance was set at 14.5 cm. This leads to an

overall length for the imaging system of 185 cm which is within the 2 m limit established

for the experiment. The general properties of the primary and secondary mirror design are
summarized Table i.

Table i.

Figure

Material

Principal Diameter

Focal Length

Geometrical Area

On-axis

2 arc minutes

Plate Scale

Field of View

Resolving Powez (X-Ray)

Design ReQuirements of the X-Ray Mirrozs

Primary

Wolter Schwarzschild

Fused Silica

30.48 cm

144.9 cm

2

42.4 cm 2
39.6 cm

-i

7.0 _m (arc sec) 2
60 x 60 (arc min)

1 arc sec

Secondary

Hyperboloid Hyperboloid

Nickel Coated Beryllium
3.15 cm

-19.9 cm

2

34.3 cm 2
5.8 cm

26.0 _m (arc sec-l)_

2.5 x 2.5 (arc min) _

1 arc sec
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Figure 2. Photograph of the nickel coated hyperboloid-hyperboloid diverging magnifier.

Specification and fabrication

A photograph of the completed diverging magnifier is presented in Figure 2.

equations for the external mirror surfaces of the diverging magnifier are:

The

First Hyperboloid:

Second Hyperboloid:

2 b-_ = 1C -

_Z, + 2c _ f_2 x 2.... --_ -- i
f2 . e e

where c = 1.981416 b = 0.167138

e = 0.261239 f = 6.157995

The first hyperboloid is located so that its first focus is co-spatial with the focus

of the primary mirror. Its second focus is made confocal with the first focus of the

second hyperbo]oid. The second focus of this surface forms, in turn, the secondary focus

of the telescope. Since hyperboloids have two foci, small deviations from the design sur-

face can be compensated for by axial displacements with no drawbacks other than a slight

change in the overall focal length.

The surface profile was measured in-situ using a laser beam which is scanned over the

surface in a controlled way. The local slope is determined from the reflected beam using

a position-sensitive detector. The difference between the slope of the required surface

and the best fit circle is corrected optically before display. In performing this opera-

tion one has to be careful to remember that the geometry established to generate a surface

with a given radius will measure a surface with twice that radius and therefore it is nec-

essary to reconfigure the equipment when changing between a polishing and a measuring

mode. Typically the best fit spheres have radii on the order of several thousand inches.

The error in establishing these radii is on the order of one part in a thousand. This

error is acceptable since it can be accommodated during the assembly of the optic by

adjustment of the spacer. The signal can also be integrated electronically to obtain the

sagittal depth as a function of position. Once a satisfactory surface has been obtained

the end pieces are removed from the finished mirror and the radial dimensions measured.

As a cost savings measure, the end pieces were made from cast iron. This turned out to be

a mistake since it was more difficult to remove this material during polishing. This

caused the surfaces near the edges to roll up and the removal of this effect was both

difficult and time consuming. Finally, the surfaces were superpolished to provide a

low-scatter finish. The mirror was fabricated , in two pieces, from optical grade

beryllium.
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The selected blanks were diamond turned to their approximate dimensions using a numeri-

cally controlled lathe. Since the polished area is relatively small, it is important to

minimize roll over at the ends and the blanks were turned and lapped with removable end

pieces in place. The machined blanks were then nickel plated which was applied to a depth

of 0.13 mm over all the surfaces of the two elements. The nickel reflecting surfaces were

again single point diamond turned and lapped to the required profile. The work was per-
formed on a modified Random machine utilizing linear, air bearing slides to define

tangents to the best fit circle. This circle is used to guide the lathe head which holds

the mirror during both the diamond turning and polishing. The radii of curvature, which

in our case are on the order of 40 m, are determined with an accuracy of 2 cm and the

location of the center of curvature with respect to the surface is known to be better than

1 part in 4000.

Each section is separately mounted to a central plate made of high-strength stainless

steel. The plate is supported by four fingers which together intercept less than 3% of

the open aperture. The steel chosen, 17-4PH, heat treated to condition HI150, provides a

very close thermal match to the beryllium, which is essential to avoid radial distortions

of the mirror surfaces under changing temperature conditions. This central plate, in ad-

dition to providing support for the two hyperbolas, also acts as the spacer. Adjustment

of its thickness allows the two hyperbolas to be made confocal.

The measured dimensions of the individual hyperbolas are compared to the design values

in Table 2. The differences are a result of the sequence of operations followed during

fabrication. As a result of various technical difficulties, the second hyperbola was com-

pleted first. Measurements of the front and back radii were made and the surface profile

derived from the measured differences between the actual surface and the best fit circle.

An updated hyperbola was calculated to fit these data and the first hyperbola modified to

match. The tolerances placed on the reflecting surfaces are shown in Table 3. We identi-

fied as the most demanding tolerances that had to be met during the fabrication of the

mirror as the roundness of the elements and the deviation of the local slope from that

predicted by the design curve. The principal roundness criterion is the variation in the

difference between the forward and aft radii of each piece as a function of azimuth. This

tolerance is referred to as A (4R), and for this mirror we established a goal of 6

micro-inches. This is a tighter specification than usual for grazing incidence

Table 2. Secondary Mirror Dimensions (Note: Dimensions Are in Inches)

P__ Measured

Diameter at front of ist hyperboloid

Diameter at rear of ist hyperboloid

Calculated diameter at mid-plane

Diameter at front of 2nd hyperboloid

Diameter at rear of 2nd hyperboloid

Length of Ist hyperboloid

Length of 2nd hyperboloid

Gap for center plate

= 1.40804 1.40846

= 1.24878 1.25209

= 1.24000

= 1.23527 1.23346

= 1.16433 1.16485

= 0.91006 0.9131

= 0.74605 0.7433

= 0.10000 0.1400

Optical

Average Radius

Out of Roundness

Variation in AR

Axial Figures

Axial Slope Error

Surface Finish

Table 3. Secondary Mirror Tolerances

Specification

(inches or as

Definition

R = Ra - Rd 200 x 10 -6

dR = (Rf - Rfd) - (_r - REd) 40 x 10 -6

A(AR)= (Rf_ - Rf) - (Rr¢ - _r) 6 x i0 -6

Sagittal Depth Deviation 3 x 10 -6

from Design Curve

_- 5 x 10 -6
radians

RMS Roughness 5 - 15 A

Subscripts: a = actual f = forward radius

d = design r = rear radius

= angular position around circumference

Achieved

100 x 10 -6

8 x 10 -6

5 x 10 -6

5 x 10 -6

15 x 10 -6

radians

15 - 20 A
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mirrors and is a consequence of their small size. In practice this tolerance depends on

the precision of the spindle used during the diamond turning and figuring processes and

these proved to be more than adequate. The axial slope error was set at five microradians

(I arc second) and this proved difficult to meet. The final figuring was performed manu-

ally and the tendency was to remove material too quickly which, while correcting the

slope, adversely affected the figure (sag). Because of program constraints, this devi-

ation from the design requirement was accepted.

X-ray testing

All measurements of the grazing incidence relay optic telescope system performance in

the X-ray regime have been conducted in the 89.5 meter vacuum facility at American Science

and Engineering, Inc. An Advanced Metals Research X-ray source provides either a point

source 30 micrometers in diameter (0.07 arc seconds) or a line source I00 micrometers in

width and 1000 micrometers in length (0.2 x 2.3 arc seconds) which can be tilted with

respect to the telescope optical axis to produce a 0.2 x 0.2 arc second spot. Since the

5.4 m effective focal length of the compound telescope is a significant fraction of the

collimation tube length, the approximation of the laboratory source to a point source at

infinity must be evaluated for each quantity measured. The effects of a finite source

distance have significant implications for the point response function.

Telescope resolution on-axis

The point response function (PRF) of an optical system describes the radial dependence

of the focused image of a point source at infinity. Experimentally, the PRF is derived

from an Abel inversion of slit scan data obtained with proportional counters masked by

0.051, 0.254, and 1.270 mm wide slit windows and translated across the image plane. The

counting rate of the image plane counter is normalized by comparison to the simultaneou_
counting rate of a cross-calibrated monitor counter masked with a circular, 0.321 cm

aperture and located directly in front of the telescope mirror.

-1 44A X-rays

10 I _ , , b : T

E _' lo'
o 10 _ ._

c u

• _ lo _',

i _ \\
103

gl_ -) _X P,imary
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: ¢ primm y and

i '.......,
== % _ * _o _o 3o ,o _o 6o ,

- / _-,-, 10 s

f= ril
._ Primary and Relay Optic

Combination I

1o'i I i I
0 100 500200 300 400
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The compound telescope PRF of a 44.7 A

(carbon K-alpba) source located on the axis of

' the optical system is presented in Figure 3.

For comparis_ purposes the PRF of the primary

mirror alone is also plotted in Figure 3.

The most significant effect of the addition of

the secondary optic is a reduction in the

overall efficiency of the system. The PRF is

not degraded. In fact, the relative PRF of

the compound telescope becomes more narrow

than the primary mirror alone at radii greater

than 35 arc seconds.

The negligible contribution of scattering

from the secondary to the overall PRF has more

to do with geometrical optics than with the

quality of the secondary. An on-axis ray

which undergoes a net scatter from the primary

mirror of 1 arc second and is then specularly

reflected by the secondary will intersect the

compound telescope image plane 26 micrometers

from the optical axis because the effective

focal length is 5.37 m. An on-axis ray which

is specularly reflected by the primary but

which undergoes a net scatter from the relay

optic of I arc second will intersect the image

plane 3 micrometers (corresponding to one--

ninth of an arc second) from the optical axis

because the distance from the relay optic to

the image plane is only 0.61 m. Therefore, at

the image plane the scatterlng due to the

600 secondary mirror is completely masked by the

scattering due to the primary mirror.

Figure 3. A comparison of the point

response function of the compound tele-

scope and the primary mirror alone at

44.5 A.
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Figure 4. A comparison of the calculated

and observed off-axis decline in energy

throughput of the compound telescope, ex-

pressed as a fraction of the on-axis ef-

fective collecting area, for a 89.5 meter

source distance.
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Figure 5. A comparison of the inte-

grated point response function of the

compound telescope and the primary

mirror alone at 44.5 A.

The apparent narrowing of the compound telescope PRF at large scattering angles is due

to vignetting of off-axis rays by the relay optic. The length of the hyperboloid mirrors

of the relay optic were chosen to maximize on-axis resolution. Many off-axis rays which

are reflected by the primary miss the reflecting surfaces of the secondary. A plot of the

relative decrease in effective area with off-axis angle is presented in Figure 4. The

solid line is a theoretical curve which is obtained from a ray tracing program which does

not include scattering. The measured data points are obtained by removing the slit mask

on the image plane proportional counter and rotating the optical bench of the telescope

relative to the source. If the field of view is defined as the position where the effec-

tive area is 10% of its on-axis value, then the field of view of the compound telescope is

restricted to a radius of 2.5 arc minutes.

Integration of the PRF in Figure 3 which yields the percent of total energy in the

focal plane within a given radius of the optical axis is presented in Figure 5. The im-

provement in percent encircled energy of the compound telescope relative to the primary is

due to vignetting of off-axis rays by the relay optic. Because of vignetting, rays at

large scattering angles are lost so that a higher fraction of the rays that do reach the

focal plane are close to the image center.

Vignetting of off-axis rays by the relay optic reduces the total energy throughput of

the compound telescope relative to the primary alone. If the energy in the secondary

focus image plane within a given radius of the image center were plotted as a fraction of

the total energy in the prime focus image plane, each point of the Primary and GIRO Combi-

nation curve in Figure 5 would be reduced by a factor of 2.6 and the curve would asymptot-

ically approach the value of 38.5%. Therefore, the improvement in the percent encircled

energy of the compound telescope is achieved with a reduction in total energy throughput.
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At shorter wavelengths, the PRF of the

primary Mirror is distinguished from its PRF

at 44.7 A _y an increase in the large angle
scattering . Because these scattered off-

axis rays miss the relay optic, the 8.3

(aluminum K-alpha) PRF of the compound tele-

scope presented in Figure 6 is similar to

the 44.7 A PRF of the compound telescope.

Integration of PRFs of the compound tele-

scope at both 44.7 A and 8.3 A yield 50%

encircled energy radii at 17 arc seconds.

In contrast, the 50% encircled energy radii

of the prime focus are 18 arc seconds at

44.7 A and 31 arc seconds at 8.3 _.

Photographs of a pinhole array illumi-

nated by a diffuse source provide another

indication of the on-axis resolution of the

compound telescope. A pinhole array with 1

arc second diameter pinholes on 2 arc second

centers was illuminated with 44.7 _ X-rays

from the defocused AMR source. The 6 pin-

holes which were illuminated are resolved.

Although detailed film calibration and

densitometry have not been conducted for

these photographs, the film developing and

printing were conducted in a manner consis-

tent with that used in previous rocket

flights.

Figure 6. A comparison of the point response

function of the compound t_lescope and the

primary mirror alone at 8.3 A.

Finite source distance effects and off-axis resolution

Geometrical ray tracing (without scattering) of the compound telescope image blur

diameter for an on-axis point source as a function of source distance is presented in

Figure 7. Because the optical elements of the relay optic were shortened to maximize

resolution, the energy throughput of the compound telescope is very sensitive to the

position of the relay optic. The calculations displayed in Figure 7 are constrained to

maximize the energy throughput of the system by adjustment of the relay optic position.

At object distances less than 600 m, the goals of zero blur diameter and maximum energy

throughput become mutually exclusive and at object distances less than 100 m, it is im-

possible to achieve zero blur diameter with any relay optic position. Even at infinite

source distance, the relay optic position for maximum energy throughput is slightly dif-

ferent from that for zero blur diameter although the resulting blur is small compared to

the effect of scattering. While it has not been possible to experiment with different

vacuum tube lengths to test these calculations, the experimentally determined relay optic

position for maximum energy throughput in the 89.5 m facility corresponds to the 21 mm

displacement from infinity focus position predicted by the calculations. The 1 arc second

RMS blur diameter predicted by ray tracing for a 89.5 m source distance is significant in

comparison to the i arc second half width-half maximum of the observed PRF.

All off-axis images of the compound telescope have some level of geometrical blurring

which is greater in the direction perpendicular to the displacement of image from the

on-axis point. The degree of the blur in the X and Y secondary focal plane directions for

an image which is displaced in the X direction from the on-axis point is shown by the

geometrical ray trace calculation presented in Figure 8. This aberration is independent

of scattering and will limit the practical field of view for high resolution imaging to a

1.25 arc minute radius.
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Figure 7. Ray trace calculation of the

position of the secondary optic which

maximizes the on-axis energy throughput

and the resulting blur (not including

scatter) for a range of source distances.

1 arc)lmL
I' ,,,4

Figure 9. Photograph of X-ray source imaged

by the compound telescope for the off-axis

displacements (from left to right) of 0 arc

seconds, 30 arc seconds, and 60 arc seconds.

Figure 8. Ray trace calculations of blur

(not including scattering) in the two di-

mensions of the compound telescope image

plane for a point source off-axis in the

in the X direction

Since the off-axis blur is not a circular

intensity pattern, a slit scan along one

axis is not sufficient to determine the

response function. Accordingly, we used

photographic X-ray photometry to measure

the two-dimensional structure of the

off-axis blur. A composite photograph of

three exposures of a 44 A X-ray source

taken at the on-axis point, 30 arc sec-

onds off axis, and 60 arc seconds off

axis is presented in Figure 9. Although

the tasks of film calibration and densi-

tometry have not been completed at the

time of this writing, the three exposures

were taken on the same roll of film to

the same level of monitor counts at the

entrance aperture of the telescope and

printed as a negative "sandwich" to

eliminate any relative enhancements.

Although the line souzce was utilized to

generate a counting rate sufficient for

reasonable exposures, the ratios of the

height to width in the photograph agree

with the ray trace calculation. The

elongated geometrical blurring pattern

is not obscured by scatter because the

majority of the scatter seen in the image

plane is due to scatter of the primary
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(see above). Since the scattering angle is small (50% in less than 18 arc seconds), the

rays scattered by the primary are subject to approximately the same aberration as those

not scattered-yielding an overall X-Y asymmetry in the total blur.

Conclusion

The goal of increasing the plate scale of a soft X-ray solar telescope over that of

previous optical systems while retaining a physical size less than 2 meters has been

achieved with the use of a grazing incidence relay optic. The design and fabrication of

the relay optic produced a system with on-axis resolution equal to that of the primary

alone. However, the drawback of the compound telescope system is an increase in

geometrical aberration and decrease in effective area with off-axis angle. Limits in

field of view are 1.25 arc minutes in radius for 1 arc second resolution and 2.5 arc

minutes in radius for acceptable effective area. Use of a CCD detector instead of

photographic film reduces the problem of effective area because of the higher quantum

efficiency of CCDs. Additionally, the larger plate scale of the compound telescope

compensates for the larger pixel size of CCDs. It is anticipated that this system will

provide a useful tool to study small scale structure in the solar corona.
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ABSTRACT

We compare coordinated, high spatial resolution observations obtained in 1979 and 1981 in soft X-rays in

microwaves at 1.45 GHz (20 cm) and 4.9 GHz (6 cm) and with photospheric magnetograms, of six coronal

loops. The loops were found to have plasma parameters typical of quiescent active region loops. Each loop

had a compact microv, ave source with T_ = 1-2.5 x 10 _' K cospatial with or near the loop apex. Contrary to

some interpretations, no complete loops {as determined by the X-ray observations) were imagcd in micro-

waves. Model loops using the deri_ed observational plasma and magnetic parameters are constructed, and the

predicted distribution of thermal microwave emission compared with observations. The loop emission

observed at 4.9 GHz is best described by fourth harmonic gyroresonance emission from a dipolc loop model.

but with less field variation along the loop than in the models of Holman and Kundu. The 1.45 GHz emission

is likely to bc free-free, since the X-ray loops are optically thick to free-free emission. The modeling results

require the existence of an external plasma around the X-ray loops with a temperature of - l0 _ K or Icss. We

are also able to deduce or place constraints on the magnetic field strengths within and their variations along

the loops.

Subject headinys: plasmas - Sun: corona Sun: magnelic tields Sun: radio radiation Sun: X-rays

I, INTRODUCTION

High spatial resolution observations over more than a

decade have revolutionized studies of active regions and

coronal loops. In particular, microwave observations have
revealed broad, diffuse areas coincident with plage emission

and small, intense components associated with sunspot pen-

umbrae and satellite spots, transverse fields over neutral lines

or filaments (Kundu et al. 1977; Kundu, Schmahl, and

Gerassimenko 1980), and emerging flux regions (Kundu and

Velusamy 1980_. Observations with the Very Large Array

(VLA) have revealed looplike structures reminiscent of those

observed in soft X-rays and EUV {e.g., Lang, Willson, and

Rayrole 1982; Lang and Willson 1983; Kundu and Velusamy

1980), suggesting that some of this microwave emission arises

in individual coronal loops.

Most of the coronal plasma in an active region is at high

temperature (i.e., T_ > 106 K) and has its dominant emission in

the soft X-ray regime (e.g., Webb 1981). In the radio regime, the

slowly varying component of emission over active regions has

a spectral maximum at centimeter wavelengths. Therefore,

coordinated high-resolution observations in X-rays and micro-

waves can provide physical insights into coronal loop struc-

tures. The X-ray observations provide information on the
three-dimensional distribution of plasma and the overall

topology of the coronal magnetic field in a loop. The micro-

wave observations provide details on the scale height, strength,

Also Indian Institute of Astrophysics. Bangalore.
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and direction of the loop magnetic field and the relative contri-

bution of magnetic and gas pressure, while photospheric mag-

netograms measure the strength of the field in the feet of the

loop.

At low spatial resolution (_0:5), quiescent active region

microwave emission has been interpreted as either thermal,

low-harmonic gyroresonance (grl emission associated with

strong sunspot fields, or thermal bremsstrahlung from plage

regions. Recent combined, high-resolution X-ray and micro-
wave observations reveal a more complicated picture. Some

observers (Chiuderi-Drago et al. 1982; Lang, Willson, and Gai-

zaukas 1983; Shibasaki et al. 1983; Strong, Alissandrakis, and

Kundu 1984) have found good agreement between the X-ray

and microwave observations and the accepted emission

mechanisms for quiescent features. Others (Schmahl et al.

1982; Webb et al. 1983, hereafter Paper I: Kahler et al. 1984,

hereafter Paper II) have observed significant differences

between the detailed locations of these sources. We will empha-

size that the detailed correspondence in activc regions between

X-ray and microwave emission is poor, and that a major

problem with interpreting loop microwave emission is that this

emission is often compact and restricted to the loop top.

Comparisons between models and observations of active

region loops have been inconclusive because of the lack of high

spatial resolution data at different wavelengths and informa-

tion on the three-dimensional structure of the magnetic field in

the corona. Recently, comparisons have been attempted

between X-ray, EUV, and radio observations of loops and
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static loop models, but these suffered from either a lack of

high-resolution radio data (e.g., Pallavicini, Sakurai, and

Vaiana 19811 or a lack of simultaneous X-ray or EUV and

microwave data (e.g, McConnell and Kundu 1983). Our

results demonstrate the importance of simultaneous high

spatial resolution microwave and soft X-ray (and EUV) obser-

vations for the testing and refinement of coronal magnetic loop

models.

This paper is the third of a series studying the detailed

plasma and magnetic field properties of active region loops,

with the goal of constraining models of the structure and

heating of active regions. The first two papers (Paper I and

Paper II} described combined soft X-ray rocket and 6 cm VLA
observations on 1979 November 16 and 7 respectively and

were primarily observational. In this paper we first describe
new results from the comparison of a third set of X-ray rocket

and 20 cm VLA observations of an active region on 1981
February 13, and then analyze six loops from these data sets
observed to have significant cospatial soft X-ray and micro-
wave emission. Based on this set of observations and the dipole

loop models of Holman and Kundu (1985}, we then construct

model loops and compare the predicted distribution of thermal
microwave emission with observations.

In the next section we describe the comparative analysis of
the 1981 February 13 observations of Hale region 454 and

briefly review the analysis and results from Paper 1 of the two

active regions observed on 1979 November 16. In § I!! we

discuss the derivation of the plasma and magnetic properties of
the six loops observed on these two dates to have cospatial soft

X-ray emission and microwave sources. Comparison of these

data with the loop models are described in § IV, and the results
are summarized and discussed in the last section.

II. COMPARATIVE ANAI.YSIS OF ACTIVE REGIONS

a) 1981 February 13 Observations and Rest,Its

i) Obserrational Data

Instrumental details of the AS&E rocket payloads have

appeared in Kahler, Davis, and Harvey (1983J and Webb and
Davis (1985). The 1981 February 13 flight payload utilized the

fused-quartz grazing-incidence mirror, four different filters

(with bandpasses over the range 8-65 A), a moderate-speed

film emulsion (SO-212), and a fine-grain emulsion (SO-2531.

Full-disk X-ray coronal images with an on-axis spatial
resolution of _2" were obtained between 1916 and 1921 UT.

Examples of these images are shown in the aforementioned

papers.
Radio observations were made with the VLA of thc Nation-

al Radio Astronomy Observatory 2 between 1600 and 2330

UT. Twenty-six antennas were available in the B-configuration

during the observations, providing good UV coverage. The

system was sensitive to structures smaller than 1:5 because the

shortest spacing used for these maps was _ 2000,.. Observa-
tions were obtained at 4.9 GHz (6.1 cm) and 1.45 GHz {20.75

cm), and the phase center for continuous tracking was
N1 lW37 at 1915 UT. This was centered on one of the leading

sunspots in Hale region 454. A reliable synthesized map of

total intensity at 1.45 GHz was produced with a synthesized

beam of 4'.'7 x 4';7. Unfortunately, reliable 5 GHz maps and

polarization data at both wavelengths were not obtained

-' NRAO is operated by Associated Universities. Inc.. under contract with

the National Science [-l.)tll)d;llion
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because the sources were not bright enough at 5 (il-tz. The

observing procedure, calibration, and cleaning methods v_cre
similar to that of McConnell and Kundu 11983). _

A full-disk photospheric magnctogram was obtained at the

National Solar Observatory 4 (NSOr Kitt Peak at 1507 UI.

and a video magnetogram at Big Bear Solar Observator_

(BBSO; at 2009 UT.(It was cloudy at BBSO earlier in thc day.)

Wc obtained contour plot,, and printouts of the NSO magnc-

togram for use in the analysis. A high-resolution H_ image of
H454 was obtained at BBSO at 2008 tiT A cine vcrsion of the

daily full-disk H7 patrol film from 1428 to _ 2000 [7[ was

obtained from NSO-Sacramento Peak Observator_ and used

to study the evolution of the active centers on this da',.

The X-ray and visible light images, the microwave map, and

the magnctogram were co-aligned and compared m the same

manner as discussed in Papers 1 and II. Briefly, the major

sunspots in H454 were used to co-align the X-ra? image, the 20

cm map and the magnctograms. The alignment accurac_ was
v,itin _ 10".

ii_ ( "lJtHpt_rill i[ l' R¢',t_/ t_

Since we are interested in studying only the quiescent fea-

tures of the activc region corona, each radio map w'a_ synthe-
sized from several hours of observations which excluded

periods with fluctuations exceeding _ 10', of the total inten-

sity signal ii.e., bursts). Therefore, flarelike periods w'cre

excluded, but not necessardy slower or evolutionary changes in

the active region, in addition, the 1.45 GHz beana included

nearly the full Sun, so thai contributions to the signal from

activity in distant regions _ere possible.

For the two active regions studied on 1979 November 16

IPaper I), we are confident that the data were obtained during

a quiescent period. However, this was not the case on 1981
February 13, when there were three main active region com-

plexes on the Sun: H454 in the northwest. H461/67 in the

northeast, and H465 in the southeast. All these regions were

active during the VLA observing period, with flares sometimes

occurring nearly simultaneously in two or three of the regions.

To aid in identifying this activity, we examined Sagamore ttill

Radio Observatory fixed-frequency records from 1600 to 2000

UT, NOAA GOES plots and lists of X-ray events, and Solar

Geophysical Data (SGD) lists of H:_ flares and radio bursts

(SGD 1981).

The evolution of !-1454 is important to an understanding of

the X-ray observations. H454 was a new region that appeared

at the east limb on February 4 on the trailing side of H391. It

grew steadily in area and complexity. On February 13 it had

roughly equal areas of east-west plage and contained 41 sun-

spots balanced between polarities (SGD 19811. There were

three large spots: two separate symmetrical, positive-polarity

spots, and one large negative spot complex. This large spot had

peak fields exceeding 2100 G and an area of 1000 millionths of

a solar hemisphere.

Radio interferometrlc obser',ations of ]t454 v, ere al,,o oblained at Owens,

Valley Radio Obser_ator.,, (OVROI al 106 (iH,' _28 cml tlturford 19861 A

single strong, unresob, ed source I T_ _ 10 _ K_ v.as detected at a location of 137

north and 542' v,'es! of Sun center m ccle_,tial coordinates "[he source v, as

5tr'_. circularly polarized and cospalial v, lth the largest _un,,pot tn H454 Its

high polarization. MIenMI}. and po_ltion t,_cr the strong ',pot fields are consln-

tent _'ilh 1o'¢,' harmonic, gr emissitln [I¢C:._LJX¢ this ,,:_urc¢ v,a_, not detected at

1.45 GHz nor assocmted _. ilh X-ra_ cmt_,_.l,qL v,e v. dl not di,,cu',,, it furlher

_" NSO Is a facilit) of National ()ptica[ A_,tr_,nom3 ()b_,er,.at_)rle'_. v, hich i,_

operated b_, the Association rift _uxersltles for Research m _,,tr_,nom_,. Inc.

under contract v, ith the Nalionid Science 1-oundati_n
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FIG. li--Co-aligned, high-resolution images la) in soft X-rays and (b) at 1.45 GHz (20 cm) of active region H454 on 1981 February 13. The X-ray image is an

"edge-enhanced" digitized image of a 20 s exposure on Kodak SO-253 emulsion obtained at 1920 UT. The edge-enhancement program, described in the Appendix

of Kah]er, Webb, and Moore (1981), essentially filters out low spatial frequencies, yielding enhanced images of coronal structures. Solar north is to the upper right

parallel to the border of the X-ray image, and east is to the upper left. The 1.45 GHz VLA map is oriented with celestial north up and east to the left. The scale unit is

100". The map is in total intensity with a synthesized clean beam of 4"7 x 4':7. The phase center (0, 0) of the map was at 661" west and 87"north of disk center at 1915

UT. The lowest contour and the contour interval are 1.72 x 10 s K. The plusses (circled on the schematic} denote the centroids of six major sunspots (Fig. 4b). The

cross marks the location of the single strong source observed at 10.6 GHz (see text}. (c) An overlay of the X-ray and radio images. (d) A schematic drawing of the

salient features from co-aligned X-ray, 20 cm radio, photospheric magnetogram, and H', images. The brightest X-ray loops are denoted by numbers. The five 1.45

GHz sources with two or more contours are cross-hatched and denoted by letters. The thin solid and dashed lines are our eslimate of the positions of the

photospheric inversion lines separating opposite magnetic field polarities. We have drawn the outline of a long H_ filament bordering the region to the northwest.
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Figure 1 shows for H454 (a) a high-resolution, digitally

enhanced soft X-ray image, (b) the 7½ hr synthesis 1.45 GHz

VLA map in total intensity, (c) the overlay of these two images,

and (d) a schematic diagram relating the salient features from

all the observations. The pluses on the 20 cm map and the
circled pluses on the schematic denote the centroids of six

major sunspots in the region (see Fig. 3b below the large

negative spot had a double umbra). The schematic drawing

compares the locations of the brightest 1.45 GHz land single

10.6 GHz) sources with the brightest X-ray loop, our estimate

of the location of the photospheric inversion line{s), and the

photospheric magnetic field polarities, both from the Kitt Peak

magnetogram at 1507 UT.

As observed in Figure la, the dominant X-ray emission was

confined to generally east-west-directed loops spanning the

negative least) and positive (west) bright plage areas between

the eastern negative and middle positive spots (Fig. ld). The

northern loop systems, including the shorter, bright loop

systems 1 and 2 in the center of the region, did not change

during the rocket observations. However, the long southern

loops, labeled "3 '" and "4" in Figure ld, did evolve during this

period. Since these loops are the subject of our comparison
with 1.45 GHz emission in the next section, we examine this

evolution more closely.

Figure 2 shows the NOAA GOES 1-8 A and 0.5-4 A soft

X-ray flux plots around the period of the rocket flight. Two

major events are evident starting at 1910 and 1933 UT. The

first event involved a compact Ha flare and surge in H454 that

was homologous with an earlier Ha event at _ 1700 UT. It

occurred in the northern penumbra of the large spot. This

subflare appeared in the rocket images during its decay as a

small, bright X-ray kernel which faded at 1918 UT. The images

used in our quantitative analysis were obtained at about 1917

and 1919 UT and were not affected by this tiny flare.

After about 1920 UT, nearly simultaneous events occurred

in the southeast region H465 and in H454. The relatively long

duration GOES X-ray signature commencing at 1933 UT was

probably dominated by an H:_ flare and mass ejection from

H465. However, the SGD only listed a IN flare in H454 with

LOO PS 719

an onset at 1929 UT and a maximum at 1938 UT. The Ha
movie revealed that the flare commenced about 1920 UT in the

plage at the feet of the large southern X-ray loops 3 and 4. The

X-ray image in Figure la was obtained at 1920 UT and shows

the west foot of loop 3 brightening. This area did not appear in

the earlier images that were used in our analysis. Therefore, we

believe that the results of our X-ray analysis of those loops are

representative of a fairly quiescent but preflare state of the
loops.

To improve our understanding of the plasma and magnetic

field properties of coronal structures, we need to identify emis-

sion at both X-ray and microwave wavelengths arising from
the same volume of a coronal structure. However, as in the

only previous studies involving simultaneous X-ray and micro-

wave (5 GHz) observations at high spatial resolution (Paper !

and Paper II), we find that the X-ray emission was generally

not associated with the 1.45 GHz microwave sources. Only one

of the five 1.45 GHz sources (source A, Fig. 1) was cospatial

with X-ray emission.

Table 1 lists the brightest 1.45 GHz sources as designated on

F'igure ld in decreasing order of peak brightness temperature

Tb. To be considered, a source had to contain at least two

contours; the other features on the map may be noise or arti-

facts of the CLEANing process. For each source in Table 1 we

FABLE 1

Bat_,HTEST 1.45 GHz SOUR_I-.S IN A( TI'vF RFcaoy H454

Peak 7_
Source (10s K) Size" Association

A ........ 8.6 IO3 22" 38" Top of coronal loop arcade;

photospheric neulral line

B .......... K6 22 32 Large sunspot umbra or penumbra;

near feel of coronal loops

C. ....... 8.6 20 35 Photospheric neutral

lines filament ; sunspot

D ........ 5.2--69 15 30 ? [Faint H:_ plage)

E .......... 3.4 5 30 ?

' The approximale FWHM dimensions of the tola] intensity along the short

and tong axis of each source. These are uncorrected for the beam shape.

1900 1910 1920 1930 1940 1950 2000

Time (UT)

Fl(, 2. NOAA GOI'.S2 salcllite v, hole-Sun _oft X-ray flux evolution around the time of the rocket flight on 1981 Februar_ I_ Plols from both the softer (topl

and harder th.ttom)channels are sho',,,n The period of the rocket flight i:, denoted by the arrov, s Date courtes)of S K ahler, Emmanuel ('_llege
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FIG. 3.--Contour map of the photospheric magnetic field in acti',e region H454 at 1507 UT on 1981 February 13. Contours of + 200, 350 and 500 G are shown.

Negative fields are shaded ; fields less than - 50 G are shown without contours. The numbered arrows point to the locations of the footpoints of X-ray loops 3 and 4
(see Fig. 1). The cross denotes the position of the peak 1.45 GHz emission from source A. (h) Co-aligned white light continuum contour map showing locations of the

sunspots in H454. Solar norlh is up and easZ to the _eft. The horizonzal dimension of the boxes is 8_5. Data courtesy of J. Harvey, NSO _Kitt Peak).
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also list its size and possible physical association in the manner

of Paper I.

Source A was one of the brightest and largcst 1.45 GHz

sources and was positioned at or near the apex of the bright

sourthern X-ray loops (Fig. lc}. Source A also overlaid an area

of moderate Ha plage and was near a bend in the photospheric

inversion line. But this area of the photosphere generally had

magnetic fields of low strength and low gradients. Figure 3

presents Kitt Peak contour maps of {a) the photospheric mag-

netic field and (b) sunspots in H454 on 1981 February 13. The

"X" in Figure 3a denotes the center of source A, and the

arrows point to the locations of the feet of X-ray loops 3 and 4.

Source B was a strong, circular source lying near the eastern

foot of loop 4. It overlaid an area of weak negative polarit)

field without bright H_ emission. The center of the source was

only 25"- 30" from the southern umbra of the large spot. Given

the alignment uncertainty and the possibility of projection

effects, it might have been associated with the corona above

this umbra or with the penumbra.

The elongated source C lay 40" west of the westernmost

positive spot in an area of no Ha activity and moderate mag-

netic field strength. The source straddled the inversion line, an

area of high field gradients, and the southern end of a long-

curving filament which formed the region to the west. Projec-

tion effects would be significant for this coronal source. Both

sources D and E lay in areas of weak negative polarity field,

with only faint H:_ plage and no activity. No magnetic pores or

spots existed in these areas [see Fig. 3b). The reality of source E
was questionable.

Finally, we note that 1.45 GHz emission was not detected

over regions where we might have expected it based on pre-

vious results. With the possible exception of source B, no emis-

sion was detected near sunspots or other strong fields where gr

emission might be expected. And other than source A, no 1.45

GHz emission was associated with the X-ray loops, the flare-

active area to the northeast, nor any bright H:_ plage regions.

Such associations have been emphasized by Lang, Willson,

and Rayrole (1982), Lang, Willson and Gaizaukas (1983), and

Chuideri-Drago et al. (1982), based on the expected dominance

of bremsstrahlung radiation at 1.45 GHz. But even the associ-

ated source A did not resemble the size or shape of the X-ray

loops.

b) Review of 1979 November 16 Result.s

Here we briefly review the main results of Paper I to provide

the background necessary for the derivation of loop param-

eters in the next section. That study was based on a determi-

nation of the spatial correspondence in two active regions of
the most intense sources of 5 GHz emission to coronal loop

structures, sunspots, chromospheric structures, and photo-

spheric magnetic fields. Some of the fanter microwave com-

ponents were associated with X-ray (bandpass of 3 _60 AI

loops, but the brighter components were not. Also, most of the

bright 6 GHz sources were not associated with sunspots. In

both Paper I and Paper II, the X-ray and magnetic field obser-

vations were used to constrain possible mechanisms for the

centimeter radio emission.

Those authors found that free-free emission did not provide

sufficient opacity to explain the 5 GHz sources (for which Tb >

106 K). Gyroresonance absorption at the third or fourth har-

monic (requiring magnetic fields of 450 or 600 G; Paper I) or at
the fourth or fifth harmonic Ifields of 360 or 450 G, Paper 11)

could explain some but not all of the emission. However, in

LOOPS 721

both studies, a nonthermal mechanism was proposed to

explain sources of intense emission Inot associated with

sunspots). This result suggests that discrete regions of contin-

uous particle acceleration might be common in active regions,

an unexpected result with potential importance to theories of

loop heating.
On 1979 November 16 about one-third of the 5 GHz sources

in both active regions were cospatial with the feet or upper

parts of coronal loops of lengths 5 × 10"* km or less. These

loops were either inferred from the geometry of the magnetic

field or detected directly in soft X-rays. Howcver, only fi_ur of

the loops had both cospatial X-ray and 5 GHz emission from

near the top of the loop. These are summarized in Table ii of

Paper I and are shown here schematically in Figure 4 super-

posed on the V LA intensity maps. Only the microwave sources

cospatial with the four X-ray loops and the sunspot locations

are labeled on Figure 4. Such emission clearly arises from the

lower corona. Based on the assumption thai the emission in
the two wavebands arises from the same volume, direct tests of

microwave emission mechanisms and derivation of loop

parameters, such as temperature gradients and magnetic field
structure, can be made.

The two loops of interest in region H421 are shown in

Figure 4a. The weak source E' was cospatial with the top of a

short, bright X-ray loop. This loop bridged the main inversion

line of the region in an area of high field gradient near a large

sunspot (the plus). The western foot ended in or near the spot

penumbra and the eastern foot was cospatial with strong

t7_, _ 4.8 × 10 _' K) source E. Because source E was compact

and cospatial with a magnetically complex area, we could not
unambiguously associate it with the X-ray loop and will not
discuss it further. The length of (_2 × 10 '_ km), shape, and

location of the X-ray loop were typical of penumbral coronal

loops IWebb and Zirin 1981). North of the spo't lay a classic

arcade structure with X-ray loops joining opposite polarity
plage divided by a weak H:_ filament. The X-ray loop drawn on
Figure 4a was the largest diffuse arch forming the northern
limit of the arcade. Cospatial with or just above the arch was

the microwave source H. This source _as bipolar and weakly
polarized with a peak Tb _ 2.5 × 10 _ K. There were no micro-
wave sources at the feet of the X-ray arch.

The two loops of interest in region H419 are shown in

Figure 4b. The most interesting was a long, thin X-ray loop

whose top was apparently fainter than its feet. Cospatial with
the loop top was source M, a broad, weak microwave source
with moderate polarization. Again there were no sources at the

footpoints. Finally, just south of the largest sunspot in H419

lay a bright, triangular-shaped area of X-ray emission associ-

ated with H_ fibrils and multiple, elongated sources, all of
which were labeled source J. The north-south orientation of

the radio emission, the X-ray structure, and the H:_ fibrils sug-

gested that the emission was associated with an arcade of low-
lying loops crossing the inversion line with their northern feet

possibly in the penumbra. This source also showed significant

polarization.

III. DERIVAFION OF I.(X)P PARAM['!II2RS

In this section we derive thc pertinent co,tonal plasma

parameters for the six X-ray loops observed ton the rocket

images of 1979 November 16 and 1981 February 13) to have

cospatial microwave sources at the loop top. We then use these

parameters to interpret the microwave emission in terms of the

thermal emission mechanisms (free-free or gr emission). For
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the two flights, pairs of adjacent exposures through beryllium

and aluminized polypropylene filters were converted to digi-

tized arrays of film density. These arrays were obtained at
1702-1703 UT on 1979 November 16 and 1917-1919 UT on

1981 February 13. To determine plasma parameters of the

0 75

66 I.... o...
(b)

i_ o © _.. i'!¸'

; , ,:, ,J J_
66

78 0 84

FK,. 4--VLA intensity maps at 5 GHz 16 cml of active regions (a) H421
and th) H419 on 1979 November 16. The size of the synthesized beam was
6" x 3". shown in the upper right. Celestial norlh is at lhe top and east to the
left The phase centers (0, 0) of the two maps were NI0W23 and N32W33
heliocentric for H421 and H419 respectively, at 00 UT The scale units are in
arcseconds. On both maps the lowest contour and the contour interval are
8 x 10 _ K. Large sunspot locations are denoted by plusses. The four X-ray
loops with associated 5 GHz sources are o',erlaid and cross-hatched on the
maps, and the microwave sources are labeled with letters See text for details.
This figure ,,,,asadapted from Figs 1--3of Paper I.

X-ray loops, the density arrays were calibrated and reduced to

arrays of energy flux at the film plane follov, ing procedures

discussed by Vaiana ef al. (1977) and modflied by Davis and

Webb (1985) for the rocket data. For the 1979 data we used the

same laboratory calibrations at 8.3 and 44 ,_ of the SO-212 film

used in Paper II, whereas for 1981 we used the modified pro-

cedure discussed by Davis and Webb 11985).

The X-ray images on the tv,'o flights were obtained with t'_,,,",

different mirror systems, a Kanigan metal mirror on 1979

November 16 and the fused silica mirror in 1981. These

mirrors have different characteristics, but both yield image-

plane pixel sizes of _ 3". The mirrors also have different scat-

tering characteristics. This scattering is characterized by poinl

spread functions which are used to produce decon_olved

energy flux arrays. 'These arrays were then used to obtain maps
of electron temperature and linear emission measure, both

integrated along the line of sight.
Table 2 summarizes the derived X-ray, microwave, and

photospheric magnetic data for the six X-ray loops. Columns

13k_6) list the plasma quantities of the loops derived from the

X-ray arrays. The listed errors are those due to film calibration

and do not directly include errors due to deconvolution of the

spread functions. This latter factor might yield uncertainties in
absolute values as great as 50%, especially for the 1979 data.

Because of apparent brightness differences along each loop,

these parameters were averaged over the eastern and western

parts of the 1981 loops, and in 1979 over the bright loop cores

near their apices and along the entire loops. Despite the bright-

ness gradients, we see that within loop segments the actual

differences in emission measure, density, and temperature were

small. The electron temperatures and densities all lay within

ranges typical of quiescent coronal active region loops (e.g..
Webb 1981). For each flight the brightness differences between

loops were due mostly to density differences, not temperature
differences, as also reported before le.g.. Davis et _d. 1975:

Cheng 1980). Within the uncertainties each loop was isobaric
and isothermal, at least along their axes.

Following Papers 1 and II, we can use thc X-ray loop

parameters to estimate the importance of thermal brems-

strahlung to the microwave emission. The free-free optical

depth is (cf. Lang 1980)

9.8 × 10 3 1n14.7 × l()_eT _
zrr = v2 TI ! 2 " J n_. dl ,

where v is the frequency of radio observations, and the electron

parameters are obtained from the X-ray measurements. For
these conditions at 4.9 GHz 11979 data), the corona is optically

thin (rrf _ 0.01 0.06) and 7_,(ff) = :. T,,. The calculated T_(fft

lcol. [7]) is factors of 10-50 too low to account for the observed

7_, at the loop top tcol. [8]L At t.45 GHz (1981 data), the

corona is optically thick (rff-_ 2.8-4.5) and Tb(ff)= T,,(I-

e-_"). I-or these conditions the calculated T_(ff_ is about a

factor of 2.5 greater than the observed T_ for source A, and

optically thick bremsstrahlung is a viable emission mechanism.
Average values for the photospheric magnetic field at the

loop footpoints estimated from the NSO contour maps are

given in the last column of Table 2. The X-ray loops cospatial
with sources H421-E' and H419-J each might have had one

foot in a spot penumbra where kG fields are possible. Thus

significant longitudinal field gradients were possible in these

loops; indeed, these loops were among the brightest in their

respective active regions. The fields at the other loop feet (a few

hundred G) are typical of plage fields.
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TABLE2
DERIVED PARAMETERS FOR X-RAY L(_)PS WITH MICROWAVE SOURCES

723

Source j" _,,2dl' AIb N/ T,a TbtffJ' Peak Tblobs)f Percent Footpoint B h
or Loop Region t10 's cm -s) [10s cmt (109 cm) 1106 K) I106 K1 (10_ KI Polarit.v f Polarity 8 IGI

Ill 121 131 141 t5) (61 171 (8) (91 (I 01 (I I )

1979 November 16

H421-E' . .... Core 3.9 4- 03 6.5 7.8 4- 0.2 3.0 + 0.2 0.15 15 L 50-200 East

Loop 3.6 _+ 0.3 6.0 + 0.8 7.8 + 0.8 2.9 _4-0.3 0.15 < 1000 West

H421-H ..... Core 4.2 + 0.4 8.7 6.9 + 0.3 2.8 4- 0.2 0.17 2.5 R 33'!i, 350 500

Loop 3.4 4- 02 13 + 4.2 5.4 _ 1.1 2.9 + 0.2 0.14

H419-M ..... Top 0.74 _+ 0.06 7.0 4- 1.8 3.4 4- 0.6 2.9 __. 0.2 0.03 1.5 R SO 50 200

H419-J ...... Core 2.5 + 0.2 (10) (5.0 + 0.2) 3.0 _+ 0.2 0.10 1.5 25 R 33 I(_) > 500

Loops 2.2 +_ 0.2 t10) (4.7 _4-0.2) 3.0 4- 0.2 0.09 < 1000

1981 February 13

3 ............. East 21__.8.8 7.0 174-3.8 2.5 2.5 09 1.0 ...... 300

West 20 _+ 8.4 3.5 23 4- 5.2 2.4 2.4 .....

4 ............ East 14 4- 6.0 &7 13 + 2.8 2.6 2.4 ......... 250

West 15 + 6.4 112t 111 4- 2.4) 2.4 2.3 ......

• Integral emission measure along the line of sight (LOS). Errors are uncertainties due to the film calibration.

s Loop thickness along the LOS estimated from the loop width on the fine-grain SO-253 film. Quantities in parentheses are less reliable.

' Electron density derived by dividing the emission measure by Al.

d Electron temperature along the LOS from two-filter method. Errors are uncertainties due to the film calibration.

' For 1979 values, average brightness temperature due to optically thin thermal bremsstrahlung calculated from X-ray parameters; for v = 4.9 GHz. For 1981

values, Tb = 7-, (1 - e- "l because at 1.45 GHz and with these X-ray parameters corona is optically thick.

f From Paper 1, Table !1.

' From Paper I, Table 1.

h Average photospheric magnetic field strength estimated from magnetogram contour maps {e.g., Fig. 31.

Following Kundu, Schmahl, and Gerassimenko (1980) and

Papers I and il, curves of unit optical depth are plotted in

Figure 5. Figure 5a is for an observation frequency of 4.9 GHz,

and Figure 5b is for 1.45 GHz. The pairs of curves running

from upper left to lower right are for second to fifth harmonic,

extraordinary mode gr absorption. The lower (dashed) curve of

each pair is for an angle 0 = 60 ° between the line of sight and

the magnetic field, while the upper (solid) curve is for an angle

of 30 °. The curves are computed from the absorption coeffi-

cients given by Takakura and Scalise (1970).

In computing the optical depth, the scale length for variation

of the magnetic field, L e = B/(dB/dl), was assumed to be
1 × 10 '_ cm. This is consistent with estimates from magnetic

field models (Kundu, Schmahl, and Gerassimenko 19801

Schmahl et al. 19821 McConnell and Kundu 1983) and with

the sizes of observed X-ray loops. The curves vary as L_ _'lt _J,

where s is the harmonic number, and, therefore, the higher

harmonics are not very sensitive to small changes in the value

of LB. The short-dashed curves represent unit optical depth for

free-free absorption when the density scale length (or loop

thickness) is I x 109 cm. A source is optically thick to gr

absorption if it lies above and to the right of the appropriate

curve, and to free-free absorption if it lies below and to the

right of the dotted curve. Also shown are the electron densities

corresponding to the plasma frequency (_,ertical line). Gyrore-

sonance emission is suppressed in the vicinity of and to the

right of the plasma frequency line.

The small rectangles in Figures 5a and 5b encompass the

range of electron temperatures and densities deduced from the

X-ray observations for the six loops. Free-free emission should

be an important contributor to the microwave emission of the

loops observed at 1.45 GHz, since the X-ray loops are optically

thick to free-free absorption. Gyroresonance emission may

also have contributed to the 1.45 GHz source, but it is likely

I0 e _ "_" _--4

10 e 10 7 I0 a 10 e I0 j° i0 Ji lO Jz

N O _cm-3_

\ N _. , -',,d, ' _';

,o._,o,\\ \
7: \ \ \. ,'-..

"-- \ _ f_

1o° \

20 e 107 JO 8 JO e 10 I0 lO 11 10 Iz
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F'I¢;. 5.--Curves of unit optical depth as a function of plasma temperature
and density for the observation frequencies of (a) 49 GHz and (h) 1.45 GHz.
The pairs of diagonal curves are for thermal gyroemission at the second
through fifth harmonics. The lower tdashed) curve is for 0 = 60 and the upper
tsolidl curve is for 0 = 30. The short-dashed curves show unit optical depth for
thermal bremsstrahlung, and the solid vertical lines show the electron densities
corresponding to the plasma frequency. The box shows the range of tem-
peratures and densities of the colonal loops determined from the X-ray data
forla) 1979 November 16 andlb11981 February 13.
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that the observed emission was predominantly free-free. At 5

GHz free-free emission is not important and the loop sources

are probably gr emission or, possibly, gyrosynchrotron emis-

sion from a more energetic population of electrons. Since the

observed brightness temperatures were on the order of or

slightly less than the electron temperatures, it is likely that the

5 GHz sources arose from low harmonic gr emission. The

highest optically thick harmonic is the fourth, corresponding

to a magnetic field strength of 440 G. Such a field strength is

consistent with that found in the photosphere at the loop feet,

except possibly for source H419-M. This source is consistent

with fourth harmonic gr emission and the observed photo-

spheric field strength only if either the photospheric field is

directed at a high angle (60°) to the line of sight or if the

photospheric field is concentrated in small, unresolved areas.

Because the solar atmosphere cannot be modeled by a

simple plane parallel atmosphere, the microwave emission
could have arisen from harmonic emission lower than the

fourth (see Holman and Kundu 1985). The polarization data

can be used to test this possibility. Following Takakura and

Scalise (1970), in Figure 6 we have plotted the polarization as a

function of the angle 0 for the second through the fourth har-

monics at 4.9 GHz (a polarization of 1.0 corresponds to 100%

polarization in the extraordinary mode). Based on the X-ray

data, we assumed the magnetic scale length to be 1 x l09 cm

and the loop temperature and density to be 3 × 10 6 K and

5 × 109 cm- 3. All the 4.9 GHz sources showed some polariz-

ation, and three of the four showed polarizations of 33% or

more (see Table 2). If the emitting region was essentially iso-

thermal, as assumed, this would limit the emission to the third

or fourth harmonic. Since the observations revealed single

compact sources near the X-ray loop tops, high values of 0 are

likely, which favors fourth-harmonic emission (Fig. 6).

IV. COMPARISON WITH MICROWAVE LOOP MODELS

In the previous section we concluded that the most likely
source of the microwave emission at 1.45 GHz _1981 February)

was thermal bremsstrahlung, and at 4.9 GHz (1979 November)

was fourth-harmonic gr emission. Now we would expect the
bremsstrahlung microwave emission to be cospatial with the

entire X-ray loop, since, to first order, they are isothermal and

isobaric. Computations of the thermal gr emission from iso-
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FIG. 6.--Fractional polarization (thermal gr emission in the extraordinary

mode) as a function of 0, the angle between the line of sight and magnetic field,

for the second, third and fourth harmonics of the gyrofrequency at 4.9 GHz.

Plasma parameters consistent with the X-ray observations are assumed (see

text).

thermal, two-dimensional dipole magnetic loop models have

been made by Holman and Kundu (1985). In these dipole

models the variation of the magnetic field strength along the

length of the loop is such that several harmonics will contrib-

ute to the loop emission. However, contrary to our expecta-

tions for the thermal mechanisms, in most of the X-ray loops in

our observations the microwave source appeared as a single,

fairly compact region near the top of the loop. Therefore, we
were forced to consider alternative models for both the 1.45

and 4.9 GHz observations.

a) 4.9 GHz: 1979 November 16

At least two of the X-ray loops observed on 1979 November

16, namely H421-H and H419-M, had a single isolated micro-

wave source near the loop top. In the simple isothermal dipole

models, it is difficult to have fourth or even third gr harmonic

emission from near the top of the loop without also detecting

lower harmonic emission from the legs of the loop. Source

H419-J could be consistent with the dipole model if the multi-

ple microwave peaks arose from a single east-west loop.

However, the authors of Paper ! interpreted the X-ray and Ha

data as indicating an arcade of north-south directed loops.

Source H421-E' could be consistent with a large variation in

field strength along an asymmetric loop if H421-E were also

associated with the western side of the X-ray loop. A difficulty

with such an interpretation in this case, however, is that the

peak brightness temperature of source E was greater than the

electron temperature deduced from the X-ray observations.

Thus, for these latter two sources, direct application of the

dipole models of Holman and Kundu does not seem appropri-

ate. (We note that both 419-M and 421-E' were weak sources.

The observations, however, reveal three cases of similar micro-

wave structures coincident with X-ray loop tops, a situation

unlikely to be due to chance.)
Therefore, we have examined two alternative models. In the

first, the magnetic field is held constant along the loop, while in

the second the field varies along the loop, though not as much

as in the Holman and Kundu (1985) dipole models, and a

limited temperature gradient exists in the loop. To obtain a

model in which the magnetic field strength does not vary along

the length of the loop, we use, instead of a dipole field, the field

generated by a line current (B _ r- J). If the current is taken to
be at the solar "surface" and hot (3 × 106 K) plasma is present

only along field lines with B _ 400-500 G, a semicircular loop

(or arcade) might be observed in X-rays. At 4.9 GHz only

fourth-harmonic emission would be observed. If the loop were

observed from a direction perpendicular to the plane contain-

ing the loop, 0 = 90 and the entire loop would be detected at

4.9 GHz. If the observer looked directly down upon the loop,

however, 0 would vary from 90' at the top to 0 =_at the foot-

points. Since, for the observed densities and temperatures, the

fourth harmonic is only optically thick at high values of 0, only

the upper part of the loop would be observed. A computation

of the 4.9 GHz brightness temperature (extraordinary mode) as

a function of position Xn along such a loop with average elec-

tron temperature and density is shown in Figure 7. The mag-

netic field strength of 440 G, corresponding to the fourth

harmonic, is taken to be constant at the loop radius of

r = 2 x 109 cm. The scan is for the observer in the plane ofthe

loop with the line of sight perpendicular to the surface

((p = 90'1. Some corresponding values of 0 are also shown

(cos 0 = Xo/r).

The lowest brightness temperature plotted in Figure 7
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Fl(;. 7. Computed 4.9 GHz brightness temperature (extraordinary mode)
as a function of position for a scan along the projected length of a model
semicircular loop with a constant field strength of 440 G (fourth-harmonic
emission) at the loop radius of 2 × 10'_cm The loop electron temperature and
density are taken to be 3 × 10" K and 5 × 10_ ¢m- 3 The angle 4_between the
line of sight and the solar surface is 90 , Representative values of 0 are also
shown.

(8 x 105 K) corresponds to the lowest intensity contour on the

microwave maps (Fig. 4). An important conclusion is that

although part of the loop is not expected to be observed, the

predicted microwave emission is still too extended to explain

the compactness of the observed sources. Since the line-of-sight

component of the loop magnetic field changes direction at
0 = 90 _', the observed microwave polarization should change

sign where the brightness temperature is greatest. It is inter-

esting that source H421-H did show evidence for such a

LOOPS 725

polarization reversal (percentage polarization: 33%), and the

lowest contour was elongated along the axis of the X-ray loop

(Fig. 4 and Paper I, Fig. 1). However, the region of left-hand

polarization was less intense and the total intensity contours

not as elongated as predicted by this model. On the other

hand, source H419-M showed neither evidence for a polariz-

ation reversal nor significant elongation along the X-ray loop.

it appears that, at least for source M, some variation in field

strength along the loop would be required, although not as
much as in the simple dipole model.

Sources such as H421-H and H419-M can most easily be

explained by a temperature gradient along the loop, with the

hottest region in the upper part of the loop as in the model

considered by McConnell and Kundu (1983). However, as is

typical (e.g., Webb 1981). the X-ray observations revealed the

loops to be essentially isothermal along their length. Such a

gradient is consistent with these observations if the hot, X-ray

emitting plasma is limited to an extended region in the upper

part of the loop, with a thin transition zone at the ends of the

hot region. For fourth-harmonic emission, the transition zone

must occur above the 580 G level within the loop, so that
emission from the lower harmonics is not observed.

Detailed models of the observational results are beyond the

scope of this paper. Full three-dimensional loop models are

presently in preparation (Holman and Brosius 1986). In Figure

8 we demonstrate how the observed 4.9 GHz loop properties

can be obtained from a modified dipole loop model. In the

figure the third and fourth harmonic levels are shown in a

model dipole loop with a minimum magnetic field strength of

425 G (at the top of the loop where y = 10.4 x 10 9 cm) (cf. Fig.

I of Holman and Kundu 1985). The y-coordinate is measured

from the position of the dipole. The transition zone must occur
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Fit;. 8.--(a) A model dipole magnetic loop v,ith a minimum magnetic field strength of425 G at y = 10.4 × 10_ cm The third- and 1`ourth-harmenic thermal gr
emission levels for an observation frequency o1"49GHz are shown. The .i-axis coordinatesare measured from the position O1t̀hedipole. (b) Samegeometry, with a
minimum magneticfield strength of 375 (3 at y = 10.4 x 109cm. Lines of sight with an inclination of _>= 45 are shown at the edgesu1t̀he 1`ourlh-harmonic [eve!,
and corresponding values of 0 are shown
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at or above the y = 9.4 × 109 cm level so that third harmonic

emission is not observed. The level at which fourth harmonic

emission occurs {B = 440 G) is near the top of the loop, so that

only a single microwave source at the top would be observed.

If the observer looked down on the loop (¢ = 90_'t, a polariz-

ation reversal would be expected, as for the line-current model.

A slight inclination of the line of sight at 4)= 75 ° or less,

however, will give a source of uniform polarization. An inclina-

tion angle somewhat larger than 75" may in fact explain the

polarization structure of source H421-H The line of sight

might also have an inclination out of the plane of the loop, as

in the actual observations, without changing these basic fea-
tures.

It seems unlikely that the 440 G level typically will appear

just at the apex of a magnetic loop. Figure 8b shows a model

loop for which the fourth-harmonic level is somewhat lower, so

that it is separated into a region in each leg of the loop. The

lield strcngth at the top ly = 10.4 × 10 "_cm) of this loop is 375

G. and the third harmonic level is .just below tile x,, axis. If the

observer looked directly, down on the loop (4_ = 9n I. a micro-

wave source would be observed in each leg These _,ources arc

identical if _h =-01) (except for sign of polarization). For

smaller values of ,,0 they dilfcr, since the range of _; is no longer

the same for the t_o regions. As an example, in Figure 8b lines

of sight wi_h an inclination of4_ = 45 are shown. The values of

0 for the fourth-harmonic source in the left leg of the loop

range from 60 to 75 In the right leg, however, 8 ranges from

15 to 30. For the parameters of this model, the fourth harmo-

nic is not optically thick at these small angles, and the

maximum brightness temperature of the region in the right leg

of the loop would be sufficiently low to be unobservable.

Hence. once again, only a single, relatively compact microwave

source would be observed near the top of the projected image

of the loop. The same results can bc obtained for an observer

outside the plane of the loop, as long as 0 < 30 for the region

in the right leg of the loop

An alternative to requiring that the transition zone occur

above the third harmonic level might be to have free-free

absorption in the plasma external to the loop mask microwave

emission from the lower parts of the loop. In the previous

section the free-free optical depth at 49 GHz for the X-ray

loops was determined to be qf _-0.01 006 If the external

medium had a similar emission measure but a temperature an

order of magnitude smaller than in the loop. hf -- 0.3 1.6 for

the external plasma. Thus, this mechanism is a possibility, par-

ticularly if the density scale length is larger than the thickness

of the X-ray loop. However, if the density scale length of the

external plasma is determined by gravity, it will decrease with

decreasing temperature, c.g., / = I., 10" cm for a 3 x 10 _ K

plasma. Also, if the external plasma density is mucla lower than

the loop density, the free-frec optical depth will be too small for

absorption to occur.

b) 1.45 GHz: 1981 Ichruar 3 I.¢

We found earlier that free-free absorption was important for

the loop emission at 1.45 GHz. The X-ray loops were opticalb

thick, but, as at 4.9 GHz, only a single, compact microv, a_e

source was observed tFig 1). Hence, both the failure t,_ detecl

in emission the entire X-ray loops or any of the other observed

X-ray structures, and the compactness of the associated micro-

wave source, must be explained. That most of the loops were

not observed at 1.45 GHz suggests that absorption by an exter-

nal plasma might be important. If we as.sumc that mirror, ave
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source A was directly associated ,aith X-ray loops 3 or 4 or

both {Fig t), we can estimate the characteristics of the external

plasma needed to detect the loop top but mask the emission

from the sides of these loops. A plot of the free-free emission

from a model demonstrating how this can occur b, shown in

Figure 9. The model consists of a semicircular loop with an
outer radius of 3 x 10 '_ cm and an inne_ radius of 25 x 10"

cm. The loop has a uniform temperature and density of
25 × 10 _' K and 1.5 x 10 TM cm _. like those of the observcd

X-ray loops. The loop is surrounded by a plasma with a

uniform temperature of I x l0 s K. The external plasma

density falls off exponentially with a scale height of 3.3 ,: 10 _

cm, the gravitational scale height for a plasma of this tem-

perature. The external plasma dcnaitv at the top of the loop

Iheight = 3 × l(Pcm)isl.6 x 10'_cm ' l-igure9showsaplot
of 1,45 GHz brlghmess temperature as a function of position

along thc loop i_ = 90 ). The 'aid_h and peak brightness tem-

perature of the resulting source arc _omparablc to the

observed ,,alues, as desired, tNote that Ihc lo_,e-q cont_,ur on

the 1.45 GHz map was 17 x ln"K [Fig Ij In computing the

brightness temperature for Figure 9, a small contribution from

Ihe index nf refraction has been neglected I

Although the model used m Figure 9 treab, the extcrmd

plasma as a uniform, plane-p,tlallel atmo,,phcre, it could, for

example, also be a more locahzed sheath surrounding the

X-ray loop. This model is preliminary and intended only to bc

illustrative: it is less reliable at lower heights, which are unob-

servable at 1.45 GHz. The model does suffice to demonstrate

how the obserxed structure can be obtained and indicates what

properties of the external plasma are required to explain the

nbservational results. More detailed models are in preparation

IBrosius and ttolman 1986). An extcrnal temperature of < 10 _

K would be required to avoid observable emission at 1.45

GHz. A temperature of the plasma this low {with its corre-

sponding scale height) is also required to produce a microwave

source that is sufficiently compact. Lower temperatures and

scale heights produce more compact sources. The required

emission measure of the 10 s K plasma is estimated for the

model to be -102' cm 5. This value is two orders of magni-
tude smaller than the emission measure of the hot ( > 106 K)

loop plasma but an order of magnitude larger than observed in

active regions with the Harvard EUV Spectrometer on Skylab
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(Noyes et al. 1985). 5 The emission measure could be an order of

magnitude smaller if the plasma temperature were closer to
10"* K.

An alternative model that does not require such a large

emission measure is to have the external absorption be gyrore-

sonance rather than free-free. Third-harmonic absorption with

T _, 105 K requires a plasma density on the order of that

required for free-free absorption Isee Fig. 5b), so the absorption
is likely to be at the second harmonic level. In this case the

magnetic field strength at the absorbing level would be 260 G,

and the emission measure of the 105 K plasma could be as low

as _ 1021 cm 5 (cf. Fig. 5b). The compact microwave source

could be reproduced if the second harmonic level either grazed

the 2.5 × 10" K loop plasma or cut through a transition zone

around the loop. In this case the microwave source would

likely arise from a combination ofgr and free-free emission.

A third alternative is that the entire X-ray loop was masked

by either second harmonic gr or free-free absorption, and the

microwave source arose from gr emission from a higher, cooler
(< 1 x 10 _' K)loop. Such a loop might be part ofan arcade of

coronal loops, with only the lower ones being sufficiently dense

or hot to be detected in X-rays. The source would likely be
third harmonic emission with B = 170 G. Such a model is

similar to that discussed for the 4.9 GHz emission, since only a

single, compact source was observed. Whichever model is

correct, however, one conclusion remains: the X-ray loops

must have been enveloped by cooler plasma with a tem-

perature < 105 K.

V. I)ISCt rSS1ON

We have analyzed two data sets in order to improve our

understanding of the plasma and magnetic field properties of
active region coronal loops. Each of these sets consisted of
co-aligned, high spatial resolution soft X-ray, microwave and
magnetogram images that were used to compare observations

of coronal loops and their feet in the photosphere and to con-
strain possible microwave emission mechanisms. Each of the
VLA observations was at a single frequency; the 1979 observa-
tion was at 5 GHz (6 cm) and had suitable polarization data
(Paper !), and the 1981 observation was at 1.45 GHz (20 cm)

with no polarization information. Many microwave sources

were detected at 5 GHz tPaper i), whereas only a few sources of

lower Tb were observed at 1.45 GHz. At both frequencies the

correspondence between the X-ray and microwave emission

was poor. However, within the three active regions analyzed,

there were six X-ray loops with cospatial microwave sources

near the loop top. The plasma parameters of these loops were

typical of quiescent active region loops. The microwave loop

top sources had Tb = 1-2.5 x 106 K, and three of the four 5

GHz sources were signdicantly polarized.

Using these results, we constructed model coronal loops and

compared the predicted distribution of thermal microwave

emission with the observations. At the higher frequency (4.9

GHz; 6 cmL simple isothermal, dipole loop models (i.e.,
Holman and Kundu 1985) do not fit the observations. The

loop emission is best fitted by fourth-harmonic gr emission

from a dipole loop (Fig. 8} with a magnetic field of _440 G

The portion of the active region discussed here is distant from sunspots

and, therefore, is unlikel} to be effected by so-called "sunspot plumes," which

can ha',e enhanced emission at 7". _ 2 6 ,_ 10 _ K (eg.. |'(_ukal et at. 1974:

Webb 1981)
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near the loop top and with the transition zone at or above the

_580 G level to suppress lower harmonic emission. This

model has less longitudinal field variation than the models of

Holman and Kundu (1985). Alternative possibilities, such as a

model where the field is generated by a line current and

remains constant along the loop, or one combining gr emission

from the loop top and free-free absorption from an external

plasma, were considered less likely'. We also found that brems-

strahlung alone could not provide sufficient opacit} to explain

the 5 GHz sources (for which T_ > 10 _' K).

At the lower frequency (I.45 GHz: 20 cmL the loops are

optically thick to free-free emission. In order to explain the

restriction of the 1.45 GHz emission to the top of occasional
loops, it is necessary to invoke absorption b} cooler material

(T_ < 10 _ K) existing either as a sheath around the loops or as

part of an external medium. A possible model iFig. 9) suggests

that the loop field strength would have to be below 260 G, so

that the loop top emission would not be masked by second-

harmonic absorption in the external medium Other pos-

sibilities we considered include loop emission from both

free-free and second harmonic gr, or third harmonic emission

with B _ 170 G from a higher, cooler loop invisible in X-rays.

The important result is that an external plasma of T,. < 10 _ K is

required in all of these models to explain the combined obser-
vations at 1.45 GHz.

In several recent studies, researchers have claimed detection

of neutral hydrogen and helium in absorption over active

regions Isee Webb 1981 for a reviewL Schmahl and Orrall

(1979) found column densities of such cool N H > 10 _7 cm 2

And Foukal {1981) discussed EUV observations of opaque

coronal material at 2 > 912 A that was most likely due to
absorption by the neutral carbon continuum Sufficient

amounts of such cool material could easily absorb the free-free

microwave emission from all or portions of coronal loops and

explain the general absence of emission from the X-ray loops.

However, white-light and X-ray observations during solar

eclipses suggest that an.,,' material between coronal loops must

be at a pressure at least 3 6 times less than in the loops (e.g.,

Krieger 1977).

It has been argued from recent observations that entire,

large coronal loops at 5 GHz (Kundu and Velusamy 1980;

Shibasaki et al. 1983) and at 1.45 GHz (Lang, Willson, and

Rayrole 1982; Lang and Wiltson 1983, 1984) are being

observed. In fact, Lang and Willson 11983) have suggested that
such 20 cm coronal loops, whose dominant emission should be

bremsstrahlung, are the radio-wavelength counterparts of

X-ray coronal loops. However, none of these observations

were supported by simultaneous spatially resolved X-ray

imagery. In studies such as ours, where resolved X-ray and

microwave images have been compared, the detailed corre-
spondence of the emission at both wavelengths has been poor.

Specifically, we have found no cases of cospatial X-ray and
microwave emission outlining entire loops and therefore

cannot support the interpretation that complete magnetic

loops filled with coronal plasma will be imaged at any single

microwave frequency.

However, although our 1.45 GHz source A was roughly

circular, elongated or curvilinear microwave structures have

apparently been observed by others. This suggests that at least

portions of coronal loops are being detected. For instance,

McConnell and Kundu 11983) observed a Iooplike structure at

1.45 GHz and, using both 1.45 and 5 GHz observations and
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the Rosner, Tucker, and Vaiana (1978) loop model, they con-

cluded that their data were most consistent with bremsstrah-

lung emission from the loop feet and gr emission from the loop

top. They disputed the claims that at 20 cm the entire loop

emission could be attributed to thermal bremsstrahlung. Other

recent modeling results (e.g., Paper II; this paper; Strong,

Alissandrakis, and Kundu 1984: Holman and Kundu 1985)

support this view and imply that, at any given radio frequency,

the emission from a quiescent coronal loop will be patchy and

may be dominated by different mechanisms at different layers

(or heights) of the loop. And our results suggest that external

absorption may play a significant role in microwave loop emis-

sion. Taken together, these studies demonstrate that the physi-

cal interpretation of coronal loops requires an appropriate

combination of high spatial resolution observations at several

wavelengths with mature loop models.

Our observational and modeling re,_,ults have revealed

important differences in interpretation with other results based

primarily on observations at a single microwave frequency.

Further substantial progress in this field will require simulta-

neous imaging of coronal structures in soft X-rays, the EUV,

and microwaves at several frequencies, and of the photospheric

field for comparison with improved theoretical models of

coronal loops.
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ERRATUM

In the paper "Neutrino Flows in Collapsing Stars: A Two-Fluid Model" by J. Cooperstein, L. J. van den Horn, and E. A. Baron

(Ap..1., 309, 653 [1986]), equations (4.30) and (4.33) erroneously contain the coefficient pertaining to neutrino-proton scattering (cf.
eqs. [4.31] and [4.34]) and should be corrected to read

._._ = - (z) 3---_ + -_ g_ n, Tv F401_), (4.30)

+_g_ n. e_ T, e),.. (4.33/
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Abstract

The new AS&E Ultrahigh Resolution Soft X-Ray Solar Research Rocket Payload has been

successfully flown twice on Black Brant IX Sounding Rockets from White Sands Missile

Range. These flights, conducted on 15 August 1987 and II December 1987, provided the

first test of the new payload which consists of 3.8X magnifying hyperboloid-hyperboloid

grazing incidence relay optic used in conjunction with an existing Wolter-I primary

mirror. An RCA SID 500 series CCD detector was utilized in a thinned, back-illuminated

configuration for recording the images. The 5.4 m effective focal length of the compound

optics system resulted in a plate scale of 1 arc second per pixel which is comparable to

the inherent resolution of the primary mirror. These flights represent the first use in

X-ray astronomy of either of these two new technologies. These observations are presented

with comparison to laboratory measurements and theoretical expectations of the instrument

performance.

Introduction

The scientific objective of the new AS&E Ultrahigh Resolution Soft X-Ray Solar

Research Rocket Payload is high spatial resolution observations with short integration

(exposure) times in order to search for fine scale transient coronal phenomena. The

motivation for this search arises from the current interest in observations of coronal

waves or nanoflares which may be associated with active region heating (e.g., Parker,

1988) 1 . These observations require several arc second spatial resolution with temporal

resolution of the order of a second. Such observations have not been previously

available.

In order to address this observational goal of simultaneous high temporal and spatial

resolution, two emerging technologies were combined each having individual applications to

X-ray astronomy. X-ray sensitive CCD detector technology provides high detection effi-

ciency so that short integration times become possible. CCD detectors also provide

accurate and consistent measurement of X-ray energy deposit which is straight forward to

model and calibrate. Grazing incidence relay optic technology provides the means in the

soft X-ray regime (<40 Angstroms) to match a variety of focal plane instruments to the

same primary mirror. The combination of a CCD detector with a magnifying grazing inci-

dence relay optic provided a match of the plate scale of the AS&E high resolution rocket

borne X-ray mirror to the spatial resolution of the CCD detector so that the high temporal

resolution available with the CCD detector could be obtained with the high spatial reso-

lution of the existing X-ray optics.

Extensive modeling and laboratory testing was conducted to determine the performance

in the X-ray regime of both the compound grazing incidence optical system and the CCD

detector. Flight tests of the compound telescope/CCD detector system were conducted on 15

August 1987 and ii December 1987 as an ancillary experiment during the 1957 X-ray Bright

Point Observing Campaign. A proof of the design principle was established during these

flights, but initial analysis of the observations indicates a level of performance below

expectation in both sensitivity and spatial resolution. The reasons for this apparent

lack of performance are not understood and further research is required to explore these

questions.

Instrumentation

Grazin_ Incidence Relay Optics Compound Telescope

The compound X-ray optics system consists of a Wolter Schwarzschild primary mirror

coupled with a diverging magnifier relay optic as illustrated in Figure i. The relay

22 / SP/E VoL 982 X-Ray/nstrumentation in Astronomy II (1988)
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Figure I. Diagram of the design for the grazing incidence relay optics system.

optic is an externally reflecting mirror with two hyperboloidal segments. This configur-

ation is analogous to the well-known Barlow lens magnifier and the specific design

considerations of such a grazing incidence mirror are described by Chase et al (1982) z.

The relay optic manufactured for this payload has a magnification of 3.7 which produces

the desired plate scale of 26 microns (arc sec)-l. Although the effective focal length is

5.4 m, the actual length of the imaging system is 1.85 m thereby fitting within the 2 m

envelope available in the sounding rocket payload, The magnified plate scale matches the

pixel size of the CCD used in this payload to the inherent resolution of the X-ray optical

system. Table 1 summarizes the design of the primary and secondary mirrors.

The new AS&E Solar Research Rocket payload is constructed to obtain observations at

both the prime focus and the secondary focus during a single flight. The secondary optic

is mounted on a translation stage that can be inserted into or removed from the optical

path upon command of the experiment computer. A film camera is also mounted on a separate

translation stage that can be inserted into or removed from the prime focus upon computer

command. At take off, the secondary optic is stowed out of the optical path and the film

camera is positioned in the prime focus to accomplish the primary mission of these flights

acquisition of full disk photographic images of the solar X-ray corona. Following the

completion of the primary mission, the film camera is retracted from the optical path and

the relay optic inserted into the optical path to form a magnified image at the secondary

focus where the CCD camera image plane is located.

The performance of compound telescope in the X-ray regime has been measured utilizing

the 89.5 meter vacuum collimator long-tube facility (LTF) at AS&E. A report on these

measurements was made by Moses et al. (1986) 3. The on-axis performance of the compound

telescope was found to be comparable with the one arc-second level resolution of the

primary mirror alone as reported earlier by Davis et al. (1979) 4 . Since the distance from

the relay optic to the image plane is 0.61 m while the effective focal length of the

primary mirror is 5.4 m, the plate scale for scattering from the relay optic (from figure

error or surface roughness) is much smaller than the equivalent scattering from the prim-

ary mirror projected onto the focal plane. The off-axis performance of the compound

telescope was found to be much worse than the primary mirror alone. Because the off-axis

Table I.

Figure

Material

Principal Diameter

Focal Length

Geometrical Area

On-axis

2 arc minutes

Plate Scale

Field of View

Resolving Power (X-Ray)

Design Requirements of the X-Ra_ Mirrors

Primar_ Secondary

Wolter Schwarzschild

Fused Silica

30.48 cm

144.9 cm

42.4 cm 2

39.6 cm 2

7.0 microns (arc sec) -I

60 x 60 (arc min) 2

1 arc sec

Hyperboloid Hyperboloid

Nickel Coated Beryllium

3.15 cm

-19.9 cm

34.3 cm 2

5.8 cm 2

26.0 microns (arc sec) -I

2.5 x 2.5 (arc min) 2

1 arc sec
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performance of the compound telescope so

strongly influences the appearance of the

flight images, the previously reported off- 100

axis measurements will be summarized.

The relay optic design was optimized

for maximum on-axis resolution. The _ 80
resulting lengths of the relay optic

hyperboloid mirrors are insufficient to

reflect much of the off-axis flux. Figure O

2 illustrates the consequent vignetting of

off-axis rays by the relay optic both as W 60

predicted by ray trace calculation and as

measured in the 89.5 m LTF. The restric- '_

tion of the vignetted field of view to a

circle of radius 2.5 arc minutes is essen- 4O
tially the same for both the 89.5 m and

U

infinite source distance. The compound

telescope also suffers flom a form of

astigmatism. The off-axis image blur due

to geometric optics (no scattering) is

greater in the direction perpendicular to

the displacement of the image from the on-

axis point. A ray trace calculation of the

rms blur of a point source displaced in the

X direction from the on-axis point is

presented in Figure 3. To express the

asymmetric character of the off-axis

10

1.O

O

?
u

m

u)

3
U.

.01

.001

0

Ray Trace Calculation
t !

39.5m

Object A"
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Ray trace calculation of blurFigure 3.

(not including scattering) in the two

dimensions of the compound telescope image

plane for a point source off-axis in the X

direction.
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Figure 2. Ray trace calculation and

observed off-axis decline in energy

throughput of the compound telescope for a

89.5 m source distance.

---1 arc minute

Figure 4. Photograph of X-ray source

imaged by the compound telescope for the

off-axis displacements (from left to right)

of 0 arc seconds, 30 arc seconds, and 60

arc seconds.
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aberration, the blur in the X and Y directions are plotted separately. For off-axis

angles less than 2 arc min, the ray trace calculation predicts a different blur pattern

for a 89.5 m and an infinite object distance, so both functions are plotted in Figure 3.

This aberration is obvious in the photograph presented in Figure 4 of an X-ray point

source in the AS&E 89.5 m LTF for off-axis displacements of 0, 30, and 60 arc seconds.

Further, it can be seen in Figure 4 that the wings of the point response function (which

are due to scattering and figure errors) clearly demonstrate the asymmetric off-axis

aberration predicted by the ray trace calculations for the unscattered rays in the core of

the point response function. Therefore, the net effect on the image is much greater than

the several arc second blur indicated by the ray trace. A practical limit on the field of

view is difficult to establish since the ray trace without scattering provides only a

qualitative guide to the off-axis aberration, although a 30 arc sec radius field of view

appears likely to be distortion free.

X-Ray Sensitive Charge Coupled Device Detector

The CCD detector is an RCA SID 500 series device operated in a back-side illuminated

mode for soft X-ray sensitivity. This required thinning the device to a thickness of

approximately 10 microns. This is a low noise, three-phase frame transfer device with 30

micron square pixels. The pixels are arranged in a 320 (H) by 256 (V) format. The CCD

camera converts the X-ray imaged focussed on the CCD device into a 256 x 256 pixel array

with each pixel magnitude represented by a digital word. As each pixel is sequentially

clocked out of the CCD, it is analyzed, incorporated into the telemetry bit stream format,

transmitted to a ground station receiver, and recorded.

The video chain of the X-ray CCD camera consists of a preamplifier, a correlated

double sample and hold and an analog to digital converter (ADC) . Ancillary circuits

include a clock driver which provides the regulated analog clock voltages required by the

CCD. It receives timing signals from a clock generator which is synchronized to the basic

frequency of the PCM modulator. The clock driver also provides the digital control

signals required by the correlated double sample and hold and the ADC. The preamplifier,

which amplifies the analog video signal, is designed to operate with a CCD which has an

on-chip source follower transistor. It is a linear amplifier with a gain of eleven, and

it provides the sample and hold circuit with a low impedance source.

The correlated double sample and hold samples the difference between the video pulse

generated by the CCD and a correlated null reference pulse and passes this difference

signal for processing by the ADC. The reference or "background" level signal is gene-

rated, before transferring out the next pixel charge, by discharging the previous pixel

charge at the CCD output transistor through a switching transistor. After the transient

caused by this discharge has decayed, the output level is an indication of the "black"

level of the CCD. This output level is not exactly equal to the pixel black level because

of the leakage charge transferred by the switching transistor control signal. The

resulting differential does not change because it depends only on the control signal

voltage, which is well regulated, and the geometry of the switching transistor, which is

extremely stable. It can therefore be accurately cancelled by an externally introduced

offset signal. This signal is generated in the video offset control from a series of

analog switches in the control register.

The circuits in the clock generator and clock driver generate the wave forms that are

used to move the exposed image from the image area to the storage area in the CCD. The

stored image is then moved, line by line, to a readout register and then, pixel by pixel,

to the output transistor. Additional features of these circuits include:

Raster limit feature which allows blanking of the beginning and the end of each line

to reduce the line from 320 to 256 pixels.

* Line blanking, for the blanking of entire lines.

The combination of "dummy" readouts with line blanking which allows the CCD to be

partially or totally cleared without undesirable and time-consuming digital readout.

The sounding rocket telemetry clock has a basic frequency (frame rate) of 1024 Hz.

Since no provision is made for on-board data storage other than the storage area of the

CCD, the telemetry rate determines the timing for the CCD. The minimum time for a frame

transfer of a complete image into the storage area with this clock is 15.6 msec. Since it

is anticipated that exposure as short as 20 msec will be required, electronic shuttering

is insufficient. A mechanical shutter system was fabricated utilizing an iris shutter in

combination with a feedback controlled chopper wheel.

The total time for telemetry of a complete image is approximately 10 sec (8 image

pixels are contained in a frame of image data). Exposure times on the order of tens of
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seconds may also be required for some

applications. Therefore, it is necessary

for the CCD to be cooled to reduce thermal

noise. An -80°C operating temperature is

obtained through a cold strap connection to

a liquid nitrogen reservoir. Active tem-

perature control is achieved by electric

heaters and a feedback circuit. The CCD

and the CCD head electronics board (con-

taining the preamplifier and logic-level

clocks) are mounted inside the vacuum

jacket of the LN2 dewar to prevent conden-

sation on the CCD. A window in the dewar

is opened when the payload reaches ob-

serving altitude.

A qualitative indication of the per-

formance of the CCD camera in the X-ray

regime can be seen in the shadowgraph image

presented in Figure 5. Edges are clearly

resolved at the 3 pixel level in this

photograph with a finite mask to CCD

distance. The 6-minute exposure time also

indicates the high level of background

suppression obtained with the cooled

device.

Detailed, quantitative measurements of

the quantum efficiency (QE) of the CCD have

been made. The QE is defined here as the

ratio of the charge at the output gate of

the device to the charge which would have

been collected in a pixel if all the

radiation incident on that pixel had been

converted into electron-hole pairs (3.6 eV

per electron-hole pair). The CCD camera

with flight electronics was coupled to a

test vacuum chamber with filtered electron

bombardment sources of either carbon or

aluminum K-alpha X-rays. Dosimetry was

determined with cross calibrated gas flow

proportional counters. An average ADC

value over a 50 x 50 pixel array was

computed by the GSE computer for each

exposure.

In order to determine a charge at the

CCD output gate from the ADC value, two

quantities must be well known: the

capacitance of the CCD output floating

diffusion charge collector and the total

electronic gain between the output gate and

the ADC. The value of the output gate

capacitance is taken from the calibration

reports provided by RCA when the device was

purchased. A value of 0.19 pF was obtained

by measuring the output transistor

discharge current during video rate readout

of white light exposure. The gains of the

various stages of the video chain are:

Sample and Hold Post Amplifier: 5.01

Sample and Hold Preamplifier: 3.55

Sample to Hold Switching: 0.90

Camera Head Preamplifier: ii.0

CCD Output: 0.99

Total 174.3

The QE for the A1 source (1.49 keV) and

C source (0.278 keV) are plotted in Figure

6. Also plotted in Figure 6 is the theo-

retical efficiency of a backside illumi-
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Figure 5. A shadowgraph taken at 44 Ang-

stroms with the CCD camera. The exposure

time was 6 minutes.
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nated device i0 microns thick with a I000 angstrom dead layer. Perfect charge collection

and transfer are assumed. The low energy efficiency is determined by the filtering effect

of the dead layer. The high energy efficiency is determined by the X-ray transmission of

the 10 micron thick sensitive region. Error bars on the QE observations are representa-

tive of 10% uncertainty in output gate capacitance and electronic gains.

Fli@ht Observations

X-ray images of the solar corona obtained during AS&E Solar Research Rocket flights on

15 August 1987 and Ii December 1987 are presented in Figures 7 and 8, respectively. The

top image in each figure is a full disk photograph taken at the prime focus of the tele-

scope. The lower image in each figure is a CCD image taken at the secondary focus of the

telescope. All images are filtered through 1 micron of polypropylene and 3500 A of alu-

minum. The circles drawn on the full disk photographic images are 2 arc minutes in dia-

meter and centered on the target region of the CCD exposure. The circles drawn on the CCD

images are 2 arc minutes in diameter and centered on the region of maximum compound tele-

scope throughput. Although the optical axis of the CCD/compound telescope system cannot

currently be determined after final assembly, the CCD optical axis implied by the tech-

nique utilized in Figures 7 and 8 approximately agree with the optical axis last deter-

mined before final assembly. Review of the rapid decline in throughput with off-axis

angle, as illustrated in Figure 2, instills confidence in this method of locating the

optical axis of the CCD system for an image of any active region larger than 2 x 2 (arc
min) 2 .

The first impression created by the CCD images is the lack of resolved spatial struc-

ture. The on-axis resolution of the compound telescope as measured in the laboratory

leads one to expect a high resolution core to the CCD image. While the off-axis aberra-

tions illustrated in Figures 3 and 4 could combine in a non-intuitive way with the source

image, the tentative conclusion on the spatial resolution of the flight images is that

they do not match that obtained in the laboratory.

A second surprise is the lack of sensitivity of the flight observations. Calculations

based on a typical 2.5 x 106 °K active region emission measure of 2 x 1029 cm -5 and the

measured CCD and telescope performance indicates CCD saturation should be obtained with a

0.5 second exposure. Flight measurements imply that CCD saturation by the observed active

region requires approximately an order of magnitude greater exposure!

The CCD X-ray response is found to increase linearly exactly as expected. For the CCD

images with pixel values significantly above background, the histograms of pixel intensity

are found to map into each other simply by the factor of exposure time. Therefore, the

value of the CCD detector as a calorimeter has been established in these flight tests.

Conclusions

One possible explanation for the apparent lack of both spatial resolution and system

throughput of the flight observations relative to the laboratory measurements is a misa-

lignment of the relay optic. There are several ways in which such a misalignment could

occur, including a deformation of the relay optic translation stage due to launch loads,

extreme sensitivity to thermally induced changes in the optical bench, and a discrepancy

between the ground-based white-light alignment technique and the in-flight, free-fall

X-ray observation configuration. Pre-flight environmental testing was conducted on the

relay optic translation stage to determine its sensitivity to launch loads. Damage to the

translation stage during the reentry and recovery phase of both flights preclude a post-

flight investigation of unexpected deformation of the stage during launch.

However, at the present level of analysis, it is premature to draw many conclusions.

Two calculations are in progress which will address the question of whether the discrep-

ancy between flight observations and laboratory measurements is real or illusory: (i)

Since the rocket flights occurred near solar minimum, the observed active regions may have

lower emission measures than typical active regions. Quantitative analysis is underway

on the film images from these flights using standard techniques in order to determine the

emission measures of the target regions. (2) The true convolution of the target active

region emission with the point response function and geometrical aberration of the com-

pound telescope as measured in the laboratory may result in the observed secondary focal

plane image. It is possible that the narrow compound telescope field of view will only be

useful for observing bright points and isolated active regions less than an arc minute in

size. The calculation required to test this possibility is a deconvolution of the prime

focus photographic image followed by a convolution of that image utilizing both the point

response function and geometrical off-axis aberration of the compound telescope.

Finally, since two new systems were combined in the same observation, there remains an

uncertainty as to which component did not perform in flight as it did in the lab. The CCD
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Figure 7. 15 August 1987 X-ray images of the solar corona through aluminized polypropy-

lene filters. Both circles are 2 arc min diameter. Top: Full disk photographic image

obtained at prime focus. Bottom: 0.280 second exposure CCD detector image obtained at

secondary focus.
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Figure 8. ii December 1987 X-ray images of the solar corona through aluminized polypropy-

lene filters. Both circles are 2 arc min diameter. Top: Full disk photographic image

obtained at prime focus. Bottom: 1.0 second exposure CCD detector image obtained at

secondary focus.
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detector will be isolated with proven systems in the next planned flight of the AS&E Solar

Research Rocket Payload. The payload will be configured with the CCD detector at the

prime focus of the Wolter Schwarzschild mirror to obtain high precision calorimetry of

large scale coronal structure. In this configuration the linearity and sensitivity (even

in the worse case interpretation of the 1987 flight data as 10% of the laboratory effi-

ciency) of the CCD detector will provide new and useful measurements of faint large scale

coronal structures such as coronal holes and helmet streamers in which a 5 arc minute

spatial resolution is useful. The insights gained from this flight on CCD performance can

then be applied to the 1987 flight data.
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ABSTRACT

Solar coronal bright points, first identified in soft X-rays as X-ray Bright Points

(XBPs), are compact, short-lived and associated with small bipolar magnetic flux. Con-

tradictory studies have suggested that XBPs are either a primary signature of the emerging

flux spectrum of the quiet Sun. or that they are representative of the disappearance of

pre-existing flux. We present results using coordinated data obtained during recent X-ray

sounding rocket flights on 15 August and II December 1987 to determine the correspondence

of XBPs with time-series, ground-based observations of evolving bipolar magnetic struc-

tures, He-I dark points, and the network. Our results are consistent with the view that

coronal bright points are more likely to be associated with the annihilation of pre-

existing flux than with emerging flux.

INTRODUCTION

In the coronae of the _un and many stars, magnetic fields permeate and constrain the hot

plasma such that the radiation traces, at least in a general sense, the field lines. At

the visible surface of the Sun. the quiescent field consists of brighter knots of emission

and stronger magnetic field that make up the "network." This network is related to super-

granulation cells, which are a surface manifestation of the deeper seated convective

activity of the Sun. Recent high temporal and spatial resolution imagery has shown that

the network magnetic fields consist of the merging and cancellation of "ephemeral" or

emerging regions, intranetwork fields, and the remnants of active region fields. Ephem-

eral regions are small magnetic bipoles of equal strength which appear at the surface and

steadily move apart. Such regions are the most common form of flux emergence in the quiet

Sun. Flux is observed to disappear from the surface at a rate which, over the short term,

results in a steady-state balance of flux. Observationally. this disappearance takes the

form of either cancellation of opposite-polarity elements or the gradual fading of flux.

These processes involve magnetic energy conversion that have been interpreted as the

reconnection and/or submergence below the surface of field lines.

In the solar corona the brightest quiet Sun structures are called bright points, because

of their compact, circular form. The X-ray characteristics of coronal bright points were

analyzed in detail during Skylab (see /1,2/ for reviews). These X-ray Bright Points

(XBPs) are compact (typically 20-30 arc sac) and short-lived (average about 8 hours), and

are associated with small photospheric magnetic bipoles. XBPs likely are small loops that

connect the opposite polarity poles. A key question is how these coronal structures are

related to the evolving network fields: are they the coronal manifestation of the emer-

gence of new flux, the disappearance of older, pre-existing flux, or a combination of

both? Similar bright points are also observed at other coronal wavelengths and in the

transition region and chromosphere, but at lower contrast with a confusing background

which consists of bright network elements.

Prior to the work presented in this paper, two approaches -- producing contradictory

results -- have been taken in determining the evolution of the magnetic structure of XBPs.

The approach of Golub and coworkers /1,3/ is primarily based on Skylab high resolution X-

ray observations and concludes that XBPs are a consequence of emerging magnetic flux. The

approach of Martin and Harvey /4,5,6/ is primarily based on high resolution magnetograms,

utilizing compact absorption features in He-I I0830A images as XBP indicators, and con-

cludes that XBPs are a consequence of cancelling or submerging magnetic flux.

The strength of the Skylab based approach was the unique time series of high spatial reso-

lution soft X-ray data obtained during the Skylab era. From this work the fundamental

characterization of XBPs was made in terms of spatial distribution, lifetime, and, in

conjunction with subsequent sounding rocket flights, the solar cycle variation in XBP

population /1,2,3/. The weakness of this approach was that it lacked simultaneous high

time resolution, high quality magnetograms. The association of XBPs with ephemeral regions

was based on study of only two simultaneous Skylab X-ray and Kitt Peak magnetogram image

sets, and the correspondence between XBPs and dipoles going in either direction was only



about50%.Withthe assumption that all "new" bipoles associated with XBPs were ephemeral

regions, Golub and coworkers concluded that XBPa are the primsry coronal signature of

emerging flux in the quiet Sun.

The strength of the more recent ground-based approach is the high time and spatial reso-

lution of the magnetogram data as well as the superior coverage of solar cycle variations.

From this work Martin and Harvey /4/ found that the spatial distribution and the solar

cycle variation of ephemeral regions did not match that of XBPs. The weakness of this

approach was the lack of high spatial resolution soft X-ray observations. Because of this

Harvey /6/ suggested that ground-based He dark point (DP) observations be used as a proxy

for XBP observations. The association of XBPs and DPs is based on a single comparative

study by Harvey et el. /7/ using Skylab X-ray and HeI-D3 images. That study was qualita-

tive and did not reveal a one-to-one correspondence between XBPs and DPs. DPa exhibit the

same solar cycle variation as XBPs but ere more typically associated with cancelling flux

regions than with ephemeral regions. Utilizing the assumption that DFa are a good proxy

for XBPa, Martin and Harvey argue that XBPs are no___ta reliable signature of emerging flux.

The difficulty with both of the above approaches is the lack of simultaneous high spatial

and high temporal resolution X-ray and ground-based observations. Partly in an attempt to

correct this difficulty, two rocket flights of the AS&E high resolution, soft X-ray

imaging psylosd were conducted in 1987. These flights were carefully orchestrated in an

unprecedented campaign to coordinate key rocket and ground-baaed observations of smell-

scale solar features. Here we report on preliminary results which address primarily the

problem of the correspondence of XBPs to evolving magnetic bipoles.

CORRESPONDENCE OF XBPS TO MAGNETIC BIPOLES

Three components of the XBP Observing Campaign ere useful in the study of XBP-associsted

bipole evolution. Full-disk soft X-ray images of the solar corona were obtained from AS&E

rocket fllghts on 15 August and 11 December 1987. Full-disk magnetogram and He-I I0830A

images were obtained by J. Harvey and K. Dere at the National Solar Observatory (NSO),

Kitt Peak before and after each flight, and narrow-field video magnetograms (VMGs) were

acquired by H. Zirin, S. Martin and J. Cook at Big Bear Solar Observatory (BBSO) starting

about 2.5 hours before end continuing through and after each flight. The NSO and BBSO

magnetogram date are of comparable spatial resolution, but the VMGs have better sensitiv-

ity and s temporal resolution of about 10 min.

The figures show examples of these data on 11 December 1987. Figure 1 is a comparison of

a full-disk NSu magnetogram with the longest exposure soft X-ray rocket image. The images

ere to the same scale. Superimposed on each is a rectangle outlining the area of 6 of the

8 VMG fields that were observed (two of the fields covered the west limb and were not used

in this study). The area of each of the fields was about 300 x 400 arc-see; one example

is shown in Figure 2.

Several steps were necessary to compare the locations of the XBPs with bipoles on the

VMGa. We first coal_gned the full-disk X-ray and NSO magnetogram images using common

bright emission features. The VMGs were easily related to the full-disk magnetograms. In

an independent, double-bllnd manner, the authors identified XBPs on X-ray images for each

flight, end S. Martin of Caltech-BBSO identified and classlfied the evolving bipoles

within the VMG fields. Viewing each of the fields as a movie, Martin classified the

bipolea as either emerging (strengthening and moving apart) or cancelling (moving together

end diaeppearing) (see Martin et el. /5/) All other bipoles were considered static

during the several hour interval of the BBSO observations. We confirmed previous results

that nearly all the XBPs corresponded to bipoles on the full-disk images. We then compared

the locations of the XBPs with the bipoles within the VMG areas. As an example, Figure 2

shows one of the VMG fields shortly after the 11 December rocket flight, with the evolving

bipoles and locations of four XBPs marked.

The important new results are summarized in Table 1. Because of the small number of XBPs,

we summed the dsts from both periods. However. the majority of both of the X-ray end

magnetic field structures were observed in the 11 December data. The reasons for this

are: (1) The global number of XBPs, and also He DPs, was about • factor of 3 higher on

11 December. (2) The nonuniformity of the XBP spatial distributions further limited the

sample within the narrow VMG field of view. (3) The VMG area we used on 11 December wee

well onto the disk, whereas the area on 15 August was displaced toward the northwest limb

where foreshortening effects compromised the magnetic field date. (4) Computer problems

compromised the motion study of the bipoles on 15 August.

The second column of the table gives the total number of each class of feature observed.

From the table, several points are clearly evident: (1) Within the VMG areas there were

only 15 XBPs but hundreds of bipoles Consequently. very few bipoles have associated

coronal emission. (2) Most of the bipolea were not obviously evolving during these periods



of observation. This is due to two factors: The interval of observation is short compared

to the mean lifetime of an ephemeral region (approximately I day) end many of the apparent

hipoles in the VMG images are probably unrelated, i.e., not connected by the same loop.

(3) Of the evolving bipoles, twice as many were classified as cancelling as emerging.

TABLE I Correspondence of X-ray Bright Points and Bipolar Magnetic Features

Total No. Observed Expected Standard

Feature Observed* XBP Assoc.* XBP Assoc. Deviation

XBPs 16 ......

Cancelling Bipoles 97 11 3.6 3.4

Emerging Bipoles 41 1 1.5 < I

Static Bipoles 262 4 9.8 2

Total Bipoles 400

* Sum from both 1987 observations on 15 August and 11 December.

The third column of the table shows how the XBFs were apportioned among the three classes

of bipoles. (One XBP could be associated with both a cancelling and an emerging bipole,

hence the total number of associations as 16.) Eleven of the 15 XBPs (approximately 2/3)

were associated with cancelling bipoles. The significance of this result can be checked

by apportioning the 15 XBPs according to the ratios of the observed hipole distributions

to yield the expected XBP associations, assuming the XBPs are randomly distributed among

the three classes of bipoles (Column 4). The last column gives the standard deviation of

the observed vs. expected distributions. Despite the small number of XBPs. we see that

both the higher number of XBPs associated with cancelling regions end the lower number

associated w_th static bipoles are significant st the 2-3 sigma level. On the contrary,

the single association with an emerging bipole is about as expected by chance.

CORRESPONDENCE OF XBPs TO He-I DARK POINTS

As discussed in the Introduction in the context of the debate between the association of

XBP with emerging or cancelling bipoles, it is important to confirm whether or not He dark

points, which can be observed from the ground, can be used as proxy for the X-ray bright

points. Briefly we report on a collaborative study in progress with L. Goluh of the

Center for Astrophysics (CFA) and K. Harvey and J. Harvey of NSO to address this question.

Routine high-quality He-I I0830A images were not available until after the Skylab mission.

Therefore, we have collected 5 data sets, each consisting of AS&E full-disk, soft X-ray

rocket images and near-slmultaneous ground-based NSO 10830A images. These include three

older data sets in 1974, 1976 end 1979 and the two sets from 1987.

Independently the XBPs on each X-ray image were identified by the authors and L. Golub and

the He DPs were identified by K. end J Harvey. These identification processes are fairly

subjective, but particularly so for the He DPs. This is because He images have lower con-

trast and He absorption features consist of both coronal and lower temperature components.

Initial DP identifications using the older method yiel_ed the following result, which is

consistent for ell 5 data sets. More XBPs than DPs were always identified, and the frac-

tion of XBPs associated with DPs was always low, typically I/4 or I/3. This suggests that,

using the previous subjective method, mos_._.ttXBPs will not be identified on a He image and,

further, that with these data we cannot confirm the assumption that He DPs ere a good

proxy for XBPB.

However. it is clear from comparison of the images that nearly all the XBPs are associated

with some compact He absorption. We are presently developing s more objective method for

identifying DPs from the He data. In addition, since the Re features tend to evolve in

brightness and size on short time scales /6/. we need to examine the temporal evolution of

individual DPs and the He emission features at the XBP sites. The 1987 data is best

suited for this purpose, because full-dlsk end narrow-field, time-series He images were

obtained in the observing campaign with the X-ray data.

SUMMARY AND CONCLUSIONS

We have used coordinated coronal images obtained from X-ray rocket flights, especially in

1987 end ground-based magnetogram and helium images to address important questions on the

nature of the bright, small-scale components of the quiet-Sun magnetic field. Our main

&eel was to address the question of whether coronal bright points as evidenced by XBPs ere

a primary signature of the solar emerging flux spectrum, or representative of the annihi-

lation of pre-existing flux. Our results with this limited data set are consistent with

the latter picture. This contradicts the original Skylab result suggesting that ell XBPs

signified ephemeral regions, and therefore emerging flux /I,3/. A recent result using



Fig. I. Comparison of full-disk, near-simultaneous imeses of a photospheric masnetogrsm

(MSO) and a soft X-ray image (AS&E). Acquisition time for the ma_neto_ram was 40 ,.in,

The X-ray image was s 60 sac. exposure with a paasband of _, 8-60A. Solar north is at the

top Ind east tO the left. The total area covered by the six BBSO VMGs is denoted on each

i_xse by the rectangle.
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Fi E . 2. An example of our comparison of the correspondence of magnetic bipoles to XBPs

within one of the six VMG fields outlined by the rectangle shown in Figure I. Square

symbols identify cancellin 8 magnetic bipoles and oval symbols identify emerging masnetlc

bipoles. If the evolution of the hipole occurred within one hour of the X-ray rocket

flight, the symbol is marked with 8 solid outline, while if the evolution occurred later.

the symbol is marked with a dashed outline. XBP locations are marked by the solid circles

which are 20 arc sec in diameter.



older X-ray rocket images and daily NSO magnetograms falls in between these two studies,

indicating that Y_Ps are slightly more likely to be associated with emerging than with
cancelling flux /8/

Our result is consistent with Martin and Harvey's suggestion that XBPa are more likely to

be associated with chance encounters of pre-existing flux than the emerging flux. This

despite the fact that we have been unable to confirm one of their basic assumptions,

namely that He DPs are a good proxy for coronal bright points (XBPs). We emphasize in this

study, as with previous VMG studies, no distinction can be made among various mechanisms

of flux disappearance.

It is possible that there are severs1 physical classes of bright points/magnetic bipoles,

and that these classes may have different solar cycle dependencies It remains unclear

where the XBPs occur with respect to the visible aupergranular network. In our data most

of the XBPs within the VMG fields were at sites of convergence of magnetic elements. Such

convergence tends to occur at network boundaries, as do cancelling magnetic features /5/.

Thus, our data provide so_e evidence that at least one class of XBPa occurs at network
boundaries.

Finally. despite our acquisition of excellent time-series magnetic field and helium data.

our comparisons were essentially static because of the short duration X-zay rocket

flights. A deflnitive test of these correspondences end. therefore, an improved under-

standing of the solar small-scale magnetic flux spectrum must await the acquisition of

simultaneous high spatial and high temporal resolution data at both coronal end optical
wavelengths.
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NSO MAGNETOGRAM

1504-1544 UT

AS&E X-RAYS

1815 UT

Fig. I. Comparison of full-disk, near-simultaneous imuEes of a photospheric magnetogram

(NSO) and a soft X-ray image (AS&E). Acquisition time for the maEnetogram was 40 mill.

The X-ray imaEe was a 60 see. exposure with a passband of 8-60A. Solar north is at the

top and east to the left. The total area covered by the six BBSO VMGs is denoted on each

image by the rectangle.
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Fig. 2. An example of our comparison of the correspondence of magnetic bipoles to XBPs

within one of the six VMG fields outlined by the rectangle shown in Figure I. Square

symbols identify cancelling magnetic bipoles and oval symbols identify emerging magnetic

bipoles. If the evolution of the bipole occurred within one hour of the X-ray rocket

flight, the symbol is marked with a solid outline, while if the evolution occurred later,

the symbol is marked with a dashed outline. XBP locations are marked by the solid circles

which are 20 arc sec in diameter.
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Abstract. Coronal holes are large scale re_1ons of

magnetically open fields which are easily observed in solar soft

X-ray images. The boundaries of coronal holes are separatrices

between lar_e-scale re_ions of open and closed magnetic f=elds

where one might expect to observe evidence of solar magnetlc

reconnection. Pre- vious studies by Nolte and colleagues using

Skylab X-ray images established that large scale (- 9 x 104 km)

chan@es in coronal hole boundaries were due to coronal processes,

i.e. , magnetic reconnection, rather than to photospherlc motions.

Those studies were limited to time scales of about one day, and

no conclusion could be drawn about the size and time scales of

the reconnection process at hole boundaries.

We have used sequences of appropriate Skylab X-ray Ima@es with

a time resolutlon of about gO min durin_ times of the central

meridlan passages of the coronal hole labelled "Coronal Hole I"

to search for hole boundary changes which can yield the spatial

and temporal scales of coronal magnetic reconnection. We find

that 2Q of 32 observed boundary changes could be associated wlth

bright points. The appearance of the bright point may be the

signature of reconnection between small-scale and far@e-scale

magnetic fields. The observed boundary changes contributed to

the quasi-rigid rotation of Coronal Hole i.

I n troduct i on

Coronal holes are regions of unusually low denslty and

temperature in the solar corona. They are present at all phases

of the solar cycle, but reach their maximum extent in the two or

three years before solar minimum. Over a decade ago Krie_er

(1Q77) in his review of the temporal behavlor of coronal holes

posed several fundamental questions about the evolutlon of holes

that have yet to be completely answered. In particul_r, he

asked: I) What is the relatlonship between the stochastic

diffusion of photospheric magnetic flux and the large-scale

boundary changes 9 2) What ]s the characteristlc time scale for

corona] hole boundary changes9 3) What is the role of emergin_

flux9 4) Are the large-scale boundary shifts cases of field line

reconnection or of the evacuation of previously opened field

lines9



An examination of the boundary changes of coronal holes was
carried out by Nolte and colleagues (Nolte et al. , 1978 a,b,c)
using Skylab X-ray images from the period of May to November
1973. For each central meridian passage (CMP) of the Skylab
coronal holes they compared the boundaries observed in three X-
ray images: an image at CMP, an image 1 day earlier, and an

image 1 day later. This procedure allowed them to study boundary

changes with a time resolution of 1 day. Because of a concern

with the possibility that the boundaries could move as a result

of the diffusive motion of the field lines, they considered two

classes of changes. Small-scale changes ranged from _41_.x 104

_m. the small_st chan_e 9k_, _ 3 timesa?ge-scale changes wer_ _ey could measure,ose exceealn 8 w x _8" i0

the average supergranulation cell length. This criterion was

used to preclude the possibility that large-scale changes could

arise from the chance association of random motions. Nolte et

al. (1978a) found statistically that about 38% of the boundary

lengths showed a significant change over 1 day. The small-scale

changes accounted for 70% of this total, and the large-scale

changes for the remaining 30%.

In their second paper Nolte et al. (1978b) inferred that the

large-scale changes (which they referred to as "sudden") must

involve a process different from that of at least some of the

small-scale changes because the large-scale changes were found to

account for most of the long-term (rotation-to-rotation) changes

in coronal hole areas whereas the small-scale changes seemed

poorly correlated with the long-term changes.

In the third paper Nolte et al. (1978c) studied the specific

coronal structures which seemed to play roles in the growth and

decay of coronal holes. They found a general agreement with the

hypothesis that holes are born and grow in conjunction with

active regions. They also found evidence that holes decayed when

the number of X-ray bright points in the longitude bands

containing the holes was relatively high. X-ray bright points

are pointlike X-ray emitting features associated with small

bipolar magnetic features (Golub et al. , 1974).

We might expect that the detailed studies of Nolte et al.

(1978 a,b,c) would have explored Krieger's (1977) questions to

the limit of the X-ray observations. However, those studies

were based only on comparisons of X-ray images obtained at l-day

intervals. Appropriate X-ray images were regularly obtained at

roughly 6-hr intervals through most of the Skylab mission and in

some cases, which we discuss here, the observations were made at

least once per orbit (= 90 min) for sequences of 3 to 7

consecutive orbits. We use these images to study coronal hole

boundary changes on this substantially shorter time scale.

Analysis

The X-ray spectrographic telescope built by American Science

and Engineering, Inc. flew on the Skylab spacecraft in 1973 and

1074. During the 8-month operational lifetime of the mission

soft X-ray images of the sun were recorded on film with a spatial

resolution of = 2 arc sec. Six different broad-band filters and
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a large dynamic range of exposure times were used to image

various solar features and provide effective temperature

diagnostics. The instrument has been described in detail by

Vaiana et al. (1977) , and an atlas of daily full-sun images of

the X-ray corona was published by Zombeck et al. (1978) .

The optimum images for studying the faint features of coronal

holes are those obtained with the largest X-ray fluence. These

are the 256 s exposures taken through the thinnest filter (filter

3) with passbands of 2-32 and 44-54 A. Usable images in this

mode were obtained from 1973 May 28 to November 21 (Nolte et al. ,

1976). We examined a catalog of all such sun-centered images

obtained during 5-day periods centered on the CMPs of low-

latitude coronal holes determined by Nolte et al. (1976) to look

for images in three or more consecutive orbits. We restricted

the images to those with coronal holes near CMP and limited the

regions of interest to latitudes of ± 40 ° to minimize the

projection effects of optically thin structures at hole

boundaries (Nolte et al. , 1976). Since we wanted to study hole

boundary changes, we sought large area holes with extensive

boundaries. For that reason we eliminated the sequences of

images of coronal holes 2 (on May 29 and August 18) and 3 (on

August 12 and 13) because of their small areas (Nolte et al. ,

IQ76) and concentrated on Coronal Hole 1 (hereafter CH i,

following the designation used by Timothy et al. (1975) for the

first coronal hole observed during the Skylab mission) . The only

images satisfying our requirements were obtained on 3 consecutive

orbits on June 2, 7 orbits on August 19, 4 orbits on August 20,

and 4 orbits on August 21.

Full-disk X-ray images of CH 1 at each CMP have been published

by several authors (i.e., Figure 9 of Timothy et al. (1075) ;

Figure 1 of Nolte et al. (1978c) ; and Figure I of Maxson and

Vaiana (1977)) and will not be repeated here. It was the largest

of the Skylab coronal holes, extending from the north pole to

about S 20" with a width of order 15 ° at the equator. The exten-

sive boundaries of the hole allow us a good opportunity to study

the details of the boundary changes.

': The changes of the hole boundaries were examined by a visual

comparison of second-generation transparencies with a disk

diameter of 10.8 cm. Since the positions of the boundaries and

the changes in those positions over several consecutive orbits

involves a subjective determination, we first listed all

suspected boundary changes in all sets of images and then

repeated the effort to get only the clearest examples. We

eliminated cases where the area changes were so small as to be

questionable or where the brightness change of a boundary feature

was not sufficient to cause one to redraw the boundary. Although

they claimed that coronal hole boundaries are sharp, Maxson and

Vaiana (1977) presented cross sections of photographic density

through the filter 3, 256 s images that clearly display the low

spatial gradients of brightness at the boundary that render the

boundary determination uncertain by perhaps 10-30 arc sec. Our

boundary changes, characterized as one-dimensional features,

ranged from _ i0 arc sec (_ 7 x I0" km) to _ 1 arc min (4.3 x I04

km) . Our lower limit is slightly less than that (_ 1.2 x 104 km)



of Nolte et al. (1978a) who examined hole boundary shifts on a
time scale of 1 day.

In the examination of the boundary changes it was immediately

apparent that bright points played an important role. This can

be seen in Figure I, which shows the sequences of filter 3, 256 s

images of CH 1 during the times of 7 consecutive orbits on August

19. In the figure black arrows point to the bright points

associated with coronal hole expansions and white arrows point to

the bright points associated with coronal hole shrinkages. One

case of a hole shrinkage with no bright point association is

shown with the lower white arrow at 0651UT in Figure i. In the

images of August 20 and 21 there were two cases of coronal hole

expansions without any observed associated bright point. In the

images of all four dates we found 32 boundary changes of which 20

could clearly be associated with bright points.

The most common kind of boundary change is simply the

appearance of a new bright point or the disappearance of a pre-

existing bright point at the coronal hole boundary in such a way

as to cause an apparent shift in the boundary by about the

dimension of the bright point itself. Most of the boundary

changes of Figure 1 are of this type. In some cases an X-ray

region somewhat more extensive than just the bright point itself

will brighten or dim. Two examples in Figure I are shown by the

lower white arrow at 0228 UT, in which a relatively large X-ray

structure in the hole attaches itself to the boundary, and by the

black arrow at the eastern boundary at 0415 UT, where a large

bright region surrounding the bright point slowly fades after the

transient appearance of the bright point.

A summary of the time and size scales of the three kinds of

boundary changes is given in Table i, where we have averaged the

measured sizes and the number of orbits over which the

brightening or dimming of the X-ray structure was observed.

Since the time resolution is _ 90 min, the actual time scales

could be significantly less than the observed values, and we have

given them as upper limits. To compare these boundary changes

with those expected from supergranulation motions, we can use the

time and size scales to calculate a characteristic speed for the

boundary changes of z 6 x I0" km" hr -_ for all categories of

changes. Assuming a supergranulation cell size of 3.2 x 104 km

and cell lifetime of 20 hr, we see that the speeds of the

boundary changes exceed the supergranulation speed of 1.6 x i0"

kmhr-* by at least a factor of 4. These boundary changes are

therefore not due to supergranulation motion.

The dimensions of the 32 observed boundary changes ranged

from 7 x i0" km to 4.5 x 104 km with an average of 1.7 x 104 km;

only one event exceeded 3.2 x 104 km. We therefore find no

evidence for large scale boundary shifts of a size exceeding

three times the supergranulation cell size (_ 9 x 104 km)

discussed by Nolte et al. (1978a) .

Most of the bright points associated with the boundary changes

are much fainter than those used by Golub et al. (1974) for

bright point statistics studies. Those authors used bright

points visible on 4 s exposures, while we have used 256 s

exposures. Comparing bright point counts in coronal holes on 4 s

u



and 256 s images, Golub et al. found about I00 times more bright

points visible on the longer exposures. They also found a

correlation between the maximum areas and the lifetimes of bright

points. The bright points we have observed are generally small

in area (< 20 x I0 v k_ ) and short lived (I-5 hrs) , consistent

with this correlation.

The tendency of CH 1 to rotate quasi-rigidly rather than to

participate in the solar differential rotation was discussed by

Timothy et al. (1975). To see whether the 32 boundary changes we

found in the sequences of images contributed to that quasi-rigid

rotation, we establish two categories of boundary changes. X-ray

brightenings on the western boundary and dimmings on the eastern

boundary of the hole result in an eastward shift of the hole

boundary. Conversely, X-ray brightenings on the eastern boundary

and dimmings on the western boundary shift the hole boundaries

westward. We used Stoneyhurst disks to measure the latitude of

each boundary change and then compared the eastward shifts with

the westward shifts as a function of latitude. The summed

results for all four dates are shown in Table 2. Coronal holes

will be sheared by differential rotation as the low-latitude

regions are shifted westward relative to the high-latitude

regions. We see that within the limited statistics of Table 2

the observed shifts oppose the differential rotation by being

predominately eastward at low (_ 20 ° ) latitudes and westward at

high (> 20 ° ) latitudes. This result may perhaps have been

anticipated from our previous knowledge of the quasi-rigid

rotation (Timothy et al. , 1975) , but it provides supporting

evidence that the boundary changes associated with bright points

are the changes important to the development of the coronal hole.

Discussion

Recent work on modeling coronal fields by the Naval Research

Lab group (Nash et al. , 1988) has provided an explanation for the

rigid rotation of coronal holes near solar minimum. Using a

potential field model with differential rotation, diffusion and

meridional flow, they found that the outer coronal field rotates

more rigidly than the underlying photospheric field because it

depends on only the lowest-order harmonic components. The motion

of the hole boundary is uncoupled from that of the underlying

photospheric flux elements by continual reconnection of magnetic

field lines. The details of the reconnection process are not

specified. One possibility is that this reconnection occurs in

the high corona. The time scale of the boundary changes (= i-5

hrs) is consistent with this, but no bright point involvement

would be expected.

The appearance of X-ray bright points in boundary changes

suggests that we examine the weak photospheric fields for the

source of the reconnection process. The structure of the

magnetic fields at hole boundaries is characteristic of the quiet

sun fields consisting of network clusters at supergranular cell

vertices and of weaker intranetwork fields (Zwaan, 1987). The

latter weak (< 50 G) fields consist of mixed polarities and do

not extend into the outer corona. We suggest that reconnection



occurs between the small-scale structure and the larger scale

magnetic field as shown schematically in Figure 2. The X-ray

bright points associated with the hole boundary changes may

correspond to the small loop in A or C of the figure or to the

reconnection region in B. The separatrix is drawn between the

two closed field regions in C because it separated the small

scale structure from the large scale structure and because the

bright point will be faint either before the sequence C,B,A or

after the sequence A,B,C. The size and time scales of the

proposed reconnection scenario are those given in Table I. A

somewhat similar schematic was proposed by Marsh (1978) to

explain the relationship between bright point flares and

supergranulation network flux elements. He observed several

cases of an H_ brightening at the network element followed by a

fibril system linking the network element with one of the poles

of the bipolar region.

Nolte et al. (1078c) found a statistical relationship between

the bright point density in coronal holes and the rate of

shrinkage of the hole area. They suggested that this was due to

two reasons. First, the hole was being filled in by X-ray-

emitting closed-field remnants of the bright points. A problem

with this idea is that we have no evidence that the bright points

grow to the observed sizes of large-scale structures. The

brightest bright points have lifetimes of less than a day (Golub

et al. , 1974). The second reason proposed by Nolte et al.

(1978c) was that the bright points enhanced the rate of reconnec-

tion of open field lines at the hole boundaries. However, if a

bright point reconnects with an open field line, one end of the

bright point bipole must also be open after the reconnection

process. Thus the proposed reconnection scenario will not result

in a net closing of large-scale open field lines. In contrast,

in our Figure 2 we see that the bright point in C interacts with

adjacent closed field line flux to produce a shrinking of the

hole area in the C,B,A sequence by motions of previously closed

field lines. A further observational problem with the Nolte et

al. idea is that a more detailed examination of the bright point

densities in coronal holes by Davis (1985) showed no association

between bright point density and the rates of hole growth or

decay.

At the time of their discovery it was obvious that bright

points were bipolar magnetic structures (Golub et al. , 1974).

They were interpreted as regions of emerging flux by Golub et al.

(1974) and others. This view was challenged by Harvey (1985) ,

who used He I 10830 A dark points as a proxy for X-ray bright

points and found that about two-thirds of the dark points were

associated with chance encounters of features of opposite

magnetic polarity. In a recent study Webb and Moses (1988)

compared bright points observed in rocket solar X-ray images with

bipoles observed in simultaneous videomagnetograms. The great

majority of bipoles were not associated with X-ray bright points,

but ii of 16 observed X-ray bright points were associated with

cancelling bipoles and only one with an emerging bipole, Webb

and Moses concluded that their results were consistent with the

Harvey (1085) interpretation that most bright points are
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associated with encounters of opposite polarity features. Our

observations suggest that the bright points form due to coronal

heating at some time during the reconnection process. X-ray

bright points are known to flare on a time Scale of minutes

(Golub et al. , 1074) , but it is not clear how the flare event or

the formation and disappearance of the bright point are related

to the reconnection scenario of Figure 2.
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k TABLE i. Time and Size Scales of Boundary Changes

Boundary Chan_e

Bright Point Only

Bright Point

and Extended

Structure

Extended Structure

Without Bright

Point

Dimmin_ Bri_htenin_

1 I cases

1 .5 x 104 km

2.3 hr

9 cases

1.4 x 104

._ 1 8 hr

km

6 cases

2.2 x 10 4 km

3.0 hr

3 cases

2.3 x 104 km

4.0 hr

2 cases

2.3 x 10 4 km

-'4 3.0 hr

1 case

2.0 x 104 km

_&3300hhr

TABLE 2.

Shifts

Observed Boundary Shifts of CH 1

Latitude

01o-i0 ° Ii°-20 ° 21°-30 ° 31°-40 °

Eastward 4 9 2 1

Westward 3 4 6 3



Fig. 1. Skylab X-ray images of CH 1 during seven consecutive

orbits on 1973 August 19. The five bright points which were

associated with expansions of the hole area are shown by black

arrows; the six bright points associated with hole shrinkage by

white arrows. One case of a hole shrinkage with no obvious

bright point association is shown by the lower white arrow at

0651 UT.

Fig. 2. Schematic for reconnection of magnetic fields at coronal

hole boundaries. Dotted regions are closed fields; the wavy line

is the separatrix between open and closed fields. Reconnection

occurs in B in the shaded region. The sequence A,B,C corresponds

to an expansion of the hole area; C,B,A corresponds to a

shrinking of the hole area.
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ABSTRACT

The technique of obtaining quantitative data from high resolution soft X-ray

photographic images produced by grazing incidence optics was successfully developed

to a high degree during the AS&E Solar Research Sounding Rocket Program and the

S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use

of soft X-ray photographic imaging in sounding rocket flights of the AS&E High

Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further

develop these techniques. The developments discussed include: (I) The calibration

and use of an inexpensive, commercially available microprocessor controlled drum

type film processor for photometric film development. (2) The use of Kodak Techni-

cal Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolu-

tion. (3) The application of a technique described by Cook, Ewing, and Sutton (1)

for determining the film characteristics curves from density histograms of the

flight film. Although the superior sensitivity, noise level, and linearity of

microchannel plate and CCD detectors attracts the development efforts of many

groups working in soft X-ray imaging, the high spatial resolution and dynamic range

as well as the reliability and ease of application of photographic media assures

the continued use of these techniques in solar X-ray astronomy observations.

I • INTRODUCTION

Photographic detection of X-rays has been an essential technique in the history of

X-ray applications since the discovery of the phenomena. X-ray photography has

been primarily used as a position sensing (imaging) technique with only qualitative

information on dosimetry. However, when sufficient effort is devoted to calibration

(in all its various aspects), quantitative measurements of total energy deposit on

a photographic medium have been successfully made for many applications.

One particularly successful use of quantitative measurements from photographic

X-ray images was developed for the AS&E Solar Research Sounding Rocket Program and

the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. The details

of this approach have been described in a series of papers and presentations (2-5).

In these programs, images of the solar soft X-ray (3-60 Angstroms) corona were

formed by grazing incidence optics with angular resolution ranging from 2-5 arc

seconds. Since the plate scales for these telescopes range from 7 to i0 microns



per arc second, the plate scale of the detector must be of the order of 7 to 20
microns. Furthermore, it is quite commonto observe coronal structures which vary
by over three orders of magnitude in soft X-ray emission within a single image;
flares can generate a dynamic range of 106. At the time of the design of these in-
struments, photographic film was the only detector suitable for space flight that
possessed the required combination of sensitivity, spatial resolution, and dynamic
range. Even today, this combination of performance, whencoupled with the refine-
ments in technique which are described in this paper, makes photographic media a
very attractive choice for quantitative soft X-ray imaging of the solar corona.

2. PHOTOMETRIC DEVELOPMENT PROCEDURE

A large immersion-type continuous flow film processor was designed and built for

the Skylab S-054 film processing. This machine was capable of maintaining varia-

tions in a test sensitometric visible light exposure to within + 0.03 diffuse

density units throughout the D log E curve for the film type used in this investi-

gation (Kodak S0-212). Furthermore, the gamma of the test D log E curve was held

to 1.50 + 0.06. While this machine provided excellent results with the 1300-foot

rolls of 70 mm Skylab film, it is poorly suited to the 25-foot rolls of 35 mm film

from the sounding rocket investigations because of the differences in the width of

film, the difficulties in splicing a sufficient length of leader for the large

processor, and the degradation in the machine following long periods of disuse.

Two aspects of the SO-212 film used in both the Skylab and Sounding Rocket investi-

gations complicate the search for alternative solutions to the problem of

photometric film processing: (I) The film was manufactured with a 2.5 mil base

instead of he standard 4 mil base to reduce the bulk of the film rolls, and (2) the

film was manufactured without the usual 1 micron gelatin topcoat to minimize

absorption of low energy X-rays. The thin film base makes for serious handling

difficulty in a processing system, particularly in loading reels for hand develop-

ment. The lack of a topcoat makes the film very sensitive to pressure-induced

developable artifacts in the handling process. Furthermore, the lack of a topcoat

makes the development of the film extremely sensitive to the local concentration of

developer chemistry. This difficulty made it impossible to obtain uniform

development across the film with any type of hand development attempted by these

investigators.

Through the suggestion of R. Haggerty of Crimson Camera Company, Cambridge,

Massachusetts, the film processing needs of the sounding rocket proglam were met by

the use of a mass produced, microprocessor controlled film processor manufactured

by King Concept Corporation of Minneapolis, Minnesota. The processor is designed

around a horizontally positioned light-tight drum into which the reel mounted film

is placed. Under microprocessor control, chemistry is introduced and evacuated on

a one-shot basis, and agitation is obtained through rotation of the drum. The

temperature of the chemistry is maintained within 0.2 degrees centigrade by a water

jacket, and the air temperature is controlled in the chamber where the drum is

mounted. Kodak HCII0 developer was used because of the ease of adjusting and

repeatably obtaining the desired dilution. The greatest difficulty in the entire

procedure was loading the 25-foot lengths of thin base S0-212 film on the stainless

steel reels. This was finally accomplished with a modification to the King Concept

Corporation device for film loading and a very practiced hand. Particular care was

also devoted to monitor the temperature soak of the process, to avoid contamination

effects, and to properly mix and store solutions.

p



The performance of the processor was monitored through the use of the same visible

light sensitometric exposures (step-wedge with density increments of 1.414) as used

in the Skylab effort. Visible light exposures were chosen over X-ray exposures

based on the issues of ease and repeatability of exposure. The calibration effort

consisted of 38 test batches conducted over a three-month interval.

The gamma of the D log E curve was found to vary along the length of the film

within a given batch by no more than 0.03 from the mean. The film development

batch exhibiting the greatest variation from the target gamma of 1.50 had a gamma

of 1.37 (a variation of 0.13), although typical variations from the target value

were of the order of 0.05. The extreme variation was obtained during a run sig-

nificantly separated in time from the previous batches, indicating the need for a

calibration run immediately before any flight run to test for changes in chemistry

strength, temperature drifts, etc.

Measurement of variations in density throughout the sensitometric step wedges was

complicated by the combination of the density structure of the step wedge, the

extreme sensitivity of S0-212 film to local chemistry variations, and the direction

of flow of the chemistry during agitation. Since agitation was accomplished in the

drum by continuous rotation, the chemistry flow was constant and unidirectional

along the length of the film. The length of the sensitometric step wedge was such

that it could only be oriented with step exposures either increasing or decreasing

along the length of the film. Therefore, the "downstream" density steps were

always exposed to developer which was partially exhausted by the upstream density

steps. While this developer exhaustion effect was never detected between two

successive step wedges, the effect was always apparent within an individual step

wedge. If the orientation of the sensitometric exposure was such that the more

heavily exposed steps were "upstream" in the flow of the developer, the densest

steps would have higher values and the less dense steps would have lower values

than the case in which the least exposed steps were oriented "upstream." The two

D log E curves would cross in the transition between the shoulder and straight line

region with the greatest differences being restricted to the shoulder region (thus

minimizing differences in gamma).

The variables of developer dilution, temperature, rotational agitation speed,

rotational agitation direction (cw vs. ccw), and development time were explored and

adjusted -- within the constraint of the target gamma value of 1.5 -- to minimize

the effects of the developer depletion along flow direction. The resulting optimal

development parameters were found to be dilution D of HCII0 at 20°C for 3.75 min-

utes with 60 RPM rotational speed and a flow direction opposite that of the

standard process. Within a single roll of film, density variations of 0.03 were

found between step wedges of similar orientation with respect to developer flow

direction. For step wedges of opposite orientation, the straight line portions

were found to differ by less than 0.06 density units within a given roll of film

while individual steps in the shoulder region could differ by as much as 0.12 den-

sity units. The density variations from roll to roll are in proportion to the var-

iations in gamma from roll to roll.

The actual effect of depletion along the developer flow for the flight images is

much less than that implied by the sensitometric step wedge measurements for two

reasons: (I) The flight exposures are chosen such that the density values in the

region of interest are within the straight line portion of the D log E curve to



provide energy resolution. (2) The size of the solar image on the film is much
smaller than the size of the sensitometric exposure (24 mmx 18 mmvs. 121 mmx
I0 mm), thus requiring much less developer for equivalent exposures. Furthermore,
the size of the most dense region in a solar image, the core of a solar active
region, is of the order of 0.5 mm. Since the active region spatial scale is less
than the spacing between successive layers of film in the development reel, one
would expect the mixing of the solution on these scales to make local developer
depletion negligible. This expectation is borne out in the analysis described in
the fourth section of this paper, where a local variation of the shape of the D log
E curve in the longer exposures would become apparent in comparison with the
shorter exposures. No localized developer depletion effects have been found in any
analysis of the flight images.

Even the worst case variations in the automated film processor performance are
greatly superior to performance obtained by hand development of S0-212 film, where
seemingly random localized variations in density are found of the order of 0.20
density units throughout most of the D log E curve. The new automated processor
does not match the consistency of performance from roll to roll of film obtained
with the Skylab effort, but since all the film from a flight is developed in one
load, the roll to roll variations are not as important. The consistency of per-
formance within a given development load of film is comparable between the new
processor and the Skylab machine. With careful attention to the inclusion of cali-
bration white light and the appropriate X-ray sensitometric step wedge exposures
with the development of a roll of film, excellent photometric results are obtained
with the new system.

3. PHOTOGRAPHIC MEDIA

In preparation for the S-054 X-Ray Spectrographic Telescope Skylab mission, a

special order photographic film was procured from Eastman Kodak in 1973. This

film, labeled S0-212, is a standard aerographic emulsion with panchromatic

response and was obtained without a gelatin top coat to improve its soft X-ray

sensitivity. This stock of S0-212 has been used as the primary detector of the

AS&E X-ray Imaging Sounding Rocket Program since its manufacture. The large volume

required for a minimum special order makes it impractical to consider the manufac-

ture of another batch of S0-212 (or an improved special order film) for the

sounding rocket program. However, the considerable stock (in sounding rocket terms)

left over from the Skylab mission has been kept in refrigerated storage and, other

than an increase in the base density level by 0.05 to 0.07 diffuse density units,

retains the same level of X-ray performance to within the uncertainty of variations

in film processing and X-ray sensitometry.

Two main drawbacks exist in the use of S0-212 in the X-ray imaging sounding rocket

program. The first drawback is the difficulties in handling the film which are

described above. The second drawback is the level of granularity of the emulsion

and the ultimate spatial resolution of the film relative to the plate scale of the

telescope. Visible light tests with fine grain film show that the X-ray rocket

mirror possesses angular resolution slightly better than I arc second, while both

visible light test and X-ray flight images on SO-212 demonstrate resolution of
several arc seconds at best.(6)

Listed in Table I are the candidates we have considered as supplements to the S0-

212 film in an attempt to improve spatial resolution and handling. The T-Max I00



film has been used in the sounding rocket flight of an XUVtelescope by Hoover et
al.(7), but we have not tested it. The S0-253 High Speed Holographic film was
te---stedby AS&Eduring a flight on 31 January 1978.(8) The Technical Pan 2415
(TP2415) was tested by AS&Eduring a flight on 15 August 1987.

TABLEi - PHOTOGRAPHICFILM COMPARISON
(KodakTechnical Data based on visible light performance)

Film Designation RMS Granularity Resolution (lines/mm)

* SO-253 High Speed

Holographic

< 5 1250

* Technical Pan 2415 From < 5-8 depending

on development

320

T-Max 100 8 160

SO-212 Special X-Ray

Emulsion Manufactured

for Skylab Mission

20 160

* Available only with gelatin top coat.

X-ray sensitometry was conducted for the films which were flown and the results are

presented in Figure I. The development parameters used in this comparison for all

three films are those producing the desired speed and contrast for S0-212. It is

possible to somewhat modify the characteristic curves of TP2415 and SO-253 through

changes in development parameters to obtain a better suited response for a given

application, but the baseline of X-ray performance in Figure 1 is useful for com-

parison purposes.

The X-ray sensitivity of photographic film is obviously inversely proportional to

the grain size and resolution. It has not been practical at this point to obtain

low energy (44 Angstrom) sensitometry of the ultra-high resolution SO-253 film

because the response of this film requires a month-long exposure with our current

apparatus. The effect of the top coat on the TP2415 appears to be minimal since

there does not appear to be a great difference in the 8.3 Angstrom and 44 Angstrom

performance relative to the S0-212 performance. Although a quantitative determina-

tion of the relative importance to soft X-ray photographic response of grain size

and top coating must await parameterization of these results in terms of a model

such as that of Henke et al. (9), it is useful to speculate on this subject. In a

film with a fine grain structure, the higher volume fraction of AgBr grains implies

a photon will, on average, traverse a smaller path length of emulsion gelatin

before absorption by a developable grain relative to a more coarse grain film. It

seems reasonable that the disadvantage of a top coat is compensated for by the

reduction in gelatin traversed by a photon in the emulsion of TP2415 in comparison

to S0-212. Higher maximum density in the shoulder region is expected in the more

densely packed fine grain films. At lower energies, the decrease in penetration

depth may minimize this effect.
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In practice, the target exposure times for S0-253 and TP2415 are increased relative

to that of S0-212 by 5.5 and 2 stops, respectively. Since a typical sounding

rocket flight provides about 5 minutes of observing time, the S0-253 is restricted

to observations of bright active region cores and flares while the TP2415 can be

used for everything but faint structures such as coronal holes and streamers. The

S0-253 solar images show the active region cores resolved into loops in most

regions with widths on the order of 1 arc second. The resolution of the TP2415

images fall midway between the resolution seen in the S0-253 images and that seen

in the S0-212 images. The core regions which are resolved in the TP2415 images

show complexes of loops with widths of 2 arc seconds.

An attempt is made to reproduce examples of these images in Figures 2 and 3. The

limitations of photographic reproduction in these proceedings restricts the

differences which can be shown. In Figure 2, a flaring bright point is clearly

resolved into a loop like structure approximately 12 arc seconds long and I arc

second wide in the S0-253 image of frame (c). The interpretation of this feature

from the best S0-212 exposure in frame (b) would be that of a small linear region.

It is impossible to identify any structure in the S0-212 image in frame (a) that

was taken through the same filter as the S0-253 image of frame (c). In Figure 3,

the differences between the TP2415 and the S0-212 are more subtle but still quite

apparent in the original prints. The grain of the TP2415 is much finer than that

of the S0-212, resulting in a higher confidence in the determination of the outline

of these inherently diffuse structures. The arrow in frame (b) points to one of

three small loops (approximately 2 arc-seconds wide and 8 arc-seconds long) in the

southern boundary of Active Region 4839 that are resolved in the TP2415 images but

not in the S0-212 images. The arrow in frame (d) points to the core loop system of

the arcade of Active Region 4841 that is resolved into individual loops

(approximately 2 arc-seconds wide and 1 arc-minute long) in the high temperature

TP2415 image but is not resolved in the corresponding S0-212 image.

These results are very encouraging. Each of the three film types has a specific

advantage that will be exploited in future flights. Because it is easy to compare

the results from the very well calibrated S0-212 with the considerable archival X-

ray coronal images, this film will remain the baseline film for the synoptic aspect

of these investigations.

4. DETERMINATION OF THE FILM CHARACTERISTIC CURVE

Quantitative information about the properties of the coronal plasma can be obtained

from soft X-ray solar images only if the film characteristic curve (i.e., the

relationship between the photographic density of the image and the energy incident

upon the film) is known. The determination of the applicable characteristic curve

is significantly complicated by the fact that the film response is wavelength

dependent and the wavelength distribution of the incident broadband spectrum

through a given filter is not known a priori. Therefore, the determination of the

film characteristics curve must be an iterative process. The wavelength dependance

of the X-ray response of the S0-212 was determined through an exhaustive effort

conducted during the S-054 Skylab Program (3,4). The measured wavelength response

of the film is combined (through a weighted average) with a model of the X-ray

emission of a plasma with assumed temperature, density, ionization state, and

composition (folded with the transmission function of the telescope and filter) to

produce a modeled characteristic curve. This modeled curve must be compared with

the photographic data from the flight in a convenient way, as the plasma parameters
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Figure 3.

(a)

Active Region complexes
4842, 4841, and 4839 in the
southern hemisphere on
August 15, 1987.
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are iteratively adjusted to obtain a good fit to all the plasma diagnostics of
these measurements.

For this discussion, we will use a parameterization of the film characteristic

curve that was developed by VanSpeybroeck for the Skylab S-054 data analysis; it

has been found to fit experimental film characteristic curves well. Other func-

tional forms have been used to describe D log E curves (Tsubaki and Engvold (I0) ,

Cook et al.(1)); the VanSpeybroeck form is chosen for this analysis, as its

parameters relate to quantities which can be easily measured from an experimental

film characteristic curve. The VanSpeybroeck form of the relationship between the

photographic density on the film is:

where: D = net density on the film

E

Dbase

Dmax
au

k

= power per unit area deposited on the film

= density of the base fog level

= maximum possible net density

= film speed parameter, proportional to the reciprocal of the energy at

which the density equals Dbase in the extrapolation of the linear

portion of the curve.

= the slope of the linear portion of the In E vs. D curve

The relationship between k (the slope of the characteristic curve expressed in

terms of the natural logarithm of energy) and gamma (the slope of the character-

istic curve expressed in the traditional terms of the logarithm base-ten of energy)
is

gamma = 2.3 k

The four parameters of the characteristic curve to be determined are Dbase , Dmax,

au, and gamma. Dbase and Dma x do not vary with wavelength, so these values can be

measured in the laboratory. The other two parameters, au and gamma, are wavelength

dependent and must be determined by an iterative technique.

Two methods of comparing a trial parameterized characteristic curve to the flight
data have been utilized:

I. The scatter plot technique, which was developed as part of the Skylab ATM

experiment data analysis of broadband soft X-ray images of the solar corona.

2. The density histogram technique, which was developed by Cook, Ewing, and

Sutton (1) for the analysis of UV photographic spectra of the Sun.

By both of these techniques, the energy calibration is an iterative process between

the laboratory calibration of the film and the flight data: The D-to-E calibration

curve measured in the lab from a stepwedge, generated with monochromatic X-rays of

a wavelength approximating the mean of the bandpass of the relevant filter, is used

as a first approximation to the film characteristic curve. This approximation is

refined iteratively by comparing image with different exposure times. The scatter

plot and density histogram techniques differ in the methods used for image

comparison.



The Scatter Plot Technique

By this technique, two digitalized images of differing exposure are, pixel by

pixel, transformed and compared to determine the energy calibration curve. The

images used must be co-aligned images of the same region, taken close enough

together in time that the region can be assumed not to have changed between expo-

sures. The trial D log E curve, taken from the monochromatic stepwedge, is used to

convert the photographic densities (DI) i and (D2) i, of each pixel, i, from each of

the two exposures to powers per unit area, (El) i and (E2) i. A "scatter plot" is

constructed by plotting E 1 vs. (t2/t I) E2, where (t2/tl) is the ratio of the expo-

sure times. If the slope of the best fit straight line to the scatter plot is

unity, the film characteristic curve is correct. If not, au and gamma are varied.

The procedure is then repeated until no improvement in the scatter plot can be

made. Note that the accuracy of this method is critically dependent upon the

distribution of the points within the scatter plot. Furthermore, the scatter plot

provides little sensitivity to, and feedback for, the toe region of the

characteristic curve.

The Density Histosram Technique

This technique is the application of a method described by Cook et al.(I) for

determining the film characteristic curve by transforming and comparing density

histograms from images of differing exposures. Histograms of density are con-

structed from at least two digitalized images of the same region of the Sun, taken

with different exposure times. One of the exposures is chosen as the base exposure,

and bin-by-bin the histograms for the other exposure times are constructed from the

base using the trial D log E curve, obtained from a monochromatic stepwedge. These

transformed histograms are compared to the actual histograms of the appropriate

exposure. The parameters of the characteristic curve, au and gamma, are varied

iteratively until the best match is found between the transformed histograms and

the actual histograms.

This technique was used to determine the characteristic curves for film from the Ii

December 1987 AS&E sounding rocket flight. The monochromatic reference stepwedge

for this film is shown in Figure 4. Also plotted in Figure 4, is the fit to the

stepwedge data obtained with the density histogram technique, for which

Dbase = 0.16, Dma x = 3.35, au = 5.70, and gamma = 0.89. It is apparent in Figure 4

that the density histogram technique provides the means to determine an excellent

fit to the data of the characteristic curve parameters. Presented in Figure 5 is

the characteristic curve determined by the density histogram technique using 3 s, 9

s, and 30 s exposures through the 8-39, 44-64 Angstrom bandpass filter of Active

Region 4901, obtained during the II December 1987 flight of the AS&E Solar Rocket

Payload. Also plotted for comparison in Figure 5 are the values of the

monochromatic reference stepwedge shown in Figure 4. The final values of the

parameters of the flight data characteristic curve were: Dbase = 0.16,

Dma x = 3.35, au = 7.00, and gamma = 0.91.

Although a determination of the characteristic curve by the scatter plot technique

has not yet been completed for the image of Active Region 4901, in the data

analysis of previous flights of this payload, the values of au and gamma determined

by the scatter plot technique for the comparable flight data are on the order of I0

to 20 percent greater than those determined for the reference 44 Angstrom
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monochromatic stepwedge. Thus, both techniques find the same qualitative
difference between the actual flight data and the reference monochromatic stepwedge
data. As can be seen in Figure 5, making the assumption that the reference
monochromatic stepwedge characteristic curve is equivalent to the flight data
characteristic curve leads to an over-estimate of energy deposit in the focal plane
by as muchas 50 percent. The importance of this aspect of the image analysis is
clear.

D iscus s ion

The density histogram technique is expected to be the more reliable method of

energy calibration for the following reasons:

I. The accuracy of the image co-alignment is less critical in the statistical

approach of the density histogram technique. The pixel-by-pixel comparison of the

scatter plot technique requires more exact co-alignment of the images.

2. As many exposures as are available may be used simultaneously to determine the

characteristic curve by the density histogram technique. The scatter plot

technique can compare two exposures only.

3. The density histogram technique is much less sensitive to the distribution of

density values within a given exposure, and works well in the toe region of the

characteristic curve.

4. It is easier to identify and ignore dirt, scratches, background, etc in the

density histograms than in scatter plots.

We are only in the initial stages of implementing the density histogram technique

in the analysis of flight data. A parallel effort with the scatter plot technique

is planned for comparison. The initial results of the density histogram technique

are very encouraging.

5. CONCLUSION

Three improvements in photographic X-ray imaging techniques for solar astronomy

have been presented. The testing and calibration of a new film processor has been

conducted, and the resulting product will allow photometric development of sounding

rocket flight film immediately upon recovery at the missile range. Two fine-grained

photographic films have been calibrated and flight tested to provide alternative

detector choices when the need for high resolution is greater than the need for

high sensitivity. " An analysis technique used to obtain the charactelistic curve

directly from photographs of UV solar spectra has been applied to the analysis of

soft X-ray photographic images, and the resulting procedure provides a more

complete and straightforward determination of the parameters describing the X-ray

characteristic curve than previous techniques. These improvements fall into the

category of refinements instead of revolutions, indicating the fundamental suita-

bility of the photographic process for X-ray imaging in solar astronomy. Although

development of electronic detectors is the central component of our on-going

development effort, photographic media will continue to be our baseline director

for the near future.
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ABSTRACT

The American Science and Engineering Soft X-Ray Imaging Payload and the

Naval Research Laboratory High Resolution Telescope and Spectrograph (HRTS)

instrument were launched from White Sands on II December 1987 in coordinated

sounding rocket flights to investigate the correspondence of coronal and

transition region structures, especially the relationship between X-ray bright

points (XBPs) and transition region small spatial scale energetic events. We

present the coaligned data from X-ray images, maps of sites of transition

region energetic events observed in C IV (I00,000 K), HRTS 1600 A spectrohelio-

grams of the Tmi n region and ground-based magnetogram and He I 10830 A images.

The transition region energetic events do not correspond to XBPs; in fact,

they are associated with X-ray dark lanes in quiet regions. XBPs are associ-

ated with magnetic dipoles often appearing as prominent network elements, and

the actual corresponding features in C IV observations are brighter, larger

scale ( 20 arc sec) regions of complex velocity flows of order 40 km s-I. How-

ever, analogously as He I 10830 A dark points are not uniquely associated with

XBPs, so also there are other similar C IV features which do correspond to an

XBP in the X-ray image.

The C IV energetic events appear to be concentrated in the quiet Sun at the

edges of strong network, or in weaker network regions. The X-ray image shows a

pattern of dark lanes in quiet Sun areas, and the C IV events are predominantly

concentrated within these dark lanes, avoiding areas of hazy, slightly brighter

X-ray emission probably corresponding to unresolved loop systems seen even in

quiet areas of the disk. We also find a greater number of C IV events than we

would have expected from the results of a disk survey undertaken on the Space-

lab 2 flight of the HRTS payload (Cook et al. 1987). This is possibly because
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of the occurrence of particularly rich regions (associated with the X-ray dark

lanes) in the field of view, and by an extended detection threshold from better

spatial resolution with the HRTSV data.
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I. INTRODUCTION

Fine scale features have been observed in the upper solar atmosphere both

in the corona and in the transition region. X-ray bright points (XBPs), struc-

tures at the 10-20 arc sec spatial scale, lasting the order of 12 hours but

with more transient periods of activity, have been observed from space by soft

X-ray instruments viewing the corona. EUV spectrographs viewing transition

region and chromospheric plasmas have observed highly transient fine scale

structures down to arc second spatial scales. In particular, small scale (2

arc sec) features in transition region emission lines such as C IV 1548 A and

1550 A have been observed which show line profiles broadened to the red or blue

by 50-200 km s -I with average lifetimes of the order of 90 s or less (Brueckner

and Bartoe 1983; Cook et al. 1987). We wanted to know if these C IV energetic

events are related to XBPs, but the lack of near simultaneous X-ray and EUV

observations left the correspondence between these coronal and transition

region fine-scale transient structures unclear. In addition, we would like to

know how these features are associated with lower atmospheric structures, for

example, with magnetic field structures and with possible He I 10830 A

counterparts.

In an effort to determine this correspondence, a collaborative "bright

point campaign" of co-observations from ground and space was organized whose

primary purpose was to determine the relationship of X-ray bright points, HRTS

high velocity transition region energetic events, He I 10830 A dark points or

other structures, and photospheric magnetic structures. Coordinated sounding

rocket flights were made by the American Science and Engineering (AS&E) High

Resolution Soft X-Ray Imaging Payload and the Naval Research Laboratory (NRL)

High Resolution Telescope and Spectrograph (HRTS) experiment from White Sands
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on 1987 Decemberii, with launches at 1815 UT (AS&E)and 1845 UT (NRL). The

AS&Eexperiment obtained full disk coronal images over the wavelength range

8-64 A, emitted by 106 K plasmas, with a spatial resolution of approximately

2 arc sec. The HRTSspectrograph slit of 920 arc sec length was rastered in

2 arc sec steps across an approximately 3 arc min wide area in the northeast

quadrant, covering a quiet area out to the solar limb. HRTSspectra were

obtained of the C IV 1548 A and 1550 A lines, emitted by transition region

plasmas at 105 K. In addition, spectroheliograms covering an area of approxi-

mately 920 x 460 arc sec were taken over a 20 A passband centered at 1600 A.

Collaborative ground based observations were also obtained, including

magnetograms (NSO/Kitt Peak and BBSO), He I 10830 A (NSO/Kitt Peak), and

H-alpha (BBSO). The HRTSspectroheliograms can be accurately registered with

the magnetograms. The slit position of HRTSspectrograms covering the transi-

tion region C IV lines 1548 A and 1550 A can be accurately placed on the HRTS

spectroheliograms. We then studied the correlation of sites of small spatial

scale (2 arc sec) high velocity ( i00 km s-I) transition region energetic

events with the ground based data, and in particular the spatial relationship

with the quiet Sunnetwork.

In this paper we will present the co-registered observations from the two

sounding rocket experiments and the ground-based observations, and discuss

their correspondence and interpretation.

II. ROCKETINSTRUMENTATION

In this section we describe the two rocket payload experiments of the

bright point collaboration.
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(i) AS&EX-ray payload

The American Science and Engineering High Resolution Soft X-Ray Solar

Astronomy Imaging Payload was flown on 15 August 1987 and ii December1987 in

participation with the Collaborative Bright Point Campaign. X-ray imaging is

achieved in the AS&Epayload by grazing incidence optics. The AS&Epayload was

programmedto reconfigure the X-ray telescope during flight from an instrument

based on a photographic film detector obtaining full disk images to an instru-

ment based on an X-ray sensitive CCDcamera obtaining 2 arc minx 2 arc min

images. Only the full disk X-ray photographic images presented in Figure I are

used in the collaborative Bright Point Campaign.

The primary mirror is a Wolter Schwarzschild design with principal diameter

of 30.48 cm and focal length of 144.9 cm. The reflecting surfaces of the

mirror are uncoated fused silica. The level of suppression of scattering which

is obtained with this mirror material by the reduction in surface roughness

results in a point spread function relatively independent of wavelength

(particularly in comparison to the Kanigen Skylab S-054 and sounding rocket

mirrors). However, the reflectivity of this surface at the grazing angles of

this mirror (approximately 1.5 degrees) is strongly wavelength dependent and

defines the decline of the short wavelength response of the system below 30

angstroms.

Kodak SO-212 film was chosen as the primary photographic film for this

mission because of its superior sensitivity with the longer wavelength filter

used to image the "cooler" coronal plasma typical of X-ray bright points. The

resolution of the combination of the telescope optics and the S0-212 film is
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limited by the film but is comparable to the practical level of microdensi-

tometry which results in pixels of 3 arc sec x 3 arc sec. This film was

manufactured in 1973 for the Skylab S-054 X-Ray Spectrographic Telescope

Experiment Programand has since been kept in cold storage. Aging of the film

has had little impact on its X-ray response and advances in the photometric

process continue to makethis film a valuable resource for X-ray imaging (Moses

et al. 1989). Since this film has been used for almost all high resolution

X-ray photographic imaging of the solar corona, comparison with prior observa-

tions in synoptic studies is greatly facilitated.

In addition to the filtering effect of the reflectivity of the imaging mirror,

the X-rays are also filtered by a heat rejection prefilter of approximately

1500 Angstroms of Aluminum and one of two focal plane filters: (I) a 17.5

micron thick Beryllium filter with a bandpass of 8 to 20 Angstroms or (2) a

I micron thick polypropylene filter coated by 2000 Angstroms of Aluminum (for

visible light rejection) with a dual bandpass of 8 to 39 and 44 to 64 Ang-

stroms. A series of exposures through each of these filters was made with

exposure times of I/2 sec, I sec, 3 sec, 9 sec and 30 sec. This sequence was

chosen to accommodatethe dynamic range of the coronal X-ray emission (which

can vary from 103 for quiet sun to more than 106 for a flare) as well as pro-

vide additional control on variations induced by photographic development

(Moseset al., 1989). The X-ray throughput of the instrument with the polypro-

pylene filter is greater than with the Beryllium filter for all temperatures of

X-ray emitting plasmas. Furthermore, the throughput of the polypropylene

filter is proportionally much greater for low temperature plasma so that the

ratio of flux through the polypropylene filter to the flux through the Beryl-
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lium filter provides a good plasma temperature diagnostic over the range of

I x 106K to 2 x 107K (Vaiana, Krieger and Timothy, 1973). Since the objective

of the collaborative observations is small scale coronal structure and since

such structures are typically cool (1.5 - 1.8 x 106K), the primary X-ray data

used in the correspondence studies are the longest available exposures through

polypropylene filters which are shown in Figure i.

The Collaborative Bright Point Campaignhad been attempted previously in

August 1985 during the Spacelab 2 flight of the HRTSinstrument. The Collabor-

ative AS&ESounding Rocket Flight was aborted during boost phase by the White

SandsMissile RangeSafety Officer. Beyondcreating the necessity of repeating

the Collaborative in 1987 from two sequentially launched rocket platforms, this

abort also left the legacy of a contamination coating on the X-ray mirror from

the explosives used to destroy the rocket booster. An effort toward cleaning

the mirror was madebefore the August 1987 flight. A review of the image from

the August flight comparedwith previous coronal images compelled us to attempt

a more invasive Cleaning effort.

The second X-ray mirror cleaning effort was conducted with a considerably

more vigorous scrubbing action coupled with particular attention to removing

organic deposits during the final sequence of solvent rinses. This cleaning

effort was a dramatic success and the resulting images from the December1987

flight show details as fine as any soft X-ray image of the solar corona. As a

precaution, an extra 60-second exposure through the thinnest available poly-

propylene filter was added to the December1987 flight exposure sequence. With

the added integration time obtained with the 60 sec exposure, the threshold
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emission measure (SNe2dl) for detection of 1.6 x 106Kplasma typical of small

scale coronal structure became 1.2 x 1025 cm5. Furthermore, the contrast of

the December 1987 image was improved to the extent that dark lanes between

regions of diffuse, quiet coronal emission becamereadily apparent. These dark

lanes are not associated with filament channels, neutral lines, or any other

readily perceivable magnetic structure. While these features can be found on

review of someprevious X-ray coronal images, they do not appear as distinctly

defined. It is reasonable to conclude that the intrinsic improvement in image

contrast of the fused silica mirror over previous metal mirrors coupled with

the reduction in scatter by contaminants removedby the cleaning has resulted

in the recognition of a coronal feature which, as will be discussed in Section

IV, shows a unique relationship with fine scale transition region energetic

events,

(ii) The NRLHRTSexperiment

The High Resolution Telescope and Spectrograph (HRTS)instrument was flown

as a rocket payload for the fifth time on II December1987. HRTSconsists of a

30 cm cassegrain telescope, a broadband spectroheliograph which was tuned to a

wavelength region around 1600 A, a stigmatic slit spectrograph which covered a

wavelength range from 1520-1570A which included the C IV lines at 1548 A and

1550 A, and an H-alpha imaging system. The spatial resolution of the instru-

ment is potentially sub arc second, and in this flight the smallest resolved

spatial features in the slit spectrograph and the spectroheliograph are approx-

imately I arc sec in size. Slit spectra were recorded by film exposure using

Kodak type I01 emulsion, and spectroheliograph images on Kodak type 104 emul-

sion. The spectrograph slit length of 920 arc sec was rastered in 1 or 2 arc
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sec steps across an approximately 3 arc min wide area in the northeast quad-

rant, covering a quiet area out to the solar limb. In addition, spectrohelio-

grams covering a field of 920 x 460 arc sec were taken every other raster step

of the slit spectrograph.

An example of a spectroheliograph exposure can be seen in Figure 2. The

spectroheliograph passband is centered at 1600 A, with a 20 A FWHM. The pre-

dominant flux source in this passband is the ultraviolet continuum, arising

from the solar temperature minimum region (see Vernazza et al. 1976), with

remaining flux contributed by chromospheric and transition region emission

lines. From an integration of this passband over a representative quiet solar

spectrum from the atlas of Kjeldseth Moeet al. (1976), where we have estimated

the continuum level and separated the flux into emission line and continuum

contributions, we find that 72%of the flux from this quiet region would arise

from continuum emission if observed by the HRTSspectroheliograph. The spec-

troheliograph field of view is 7.5 x 15 arc min in size. The HRTSspectrograph

slit passes down the approximate center of the spectroheliograph image, which

is obtained from a solar image reflected from the mirrored slit jaw plates.

Three fiducial wires cross the image field perpendicular to the slit.

A series of film exposures of length 2.0 s, 1.0 s, and 0.5 s was taken at

every other raster step of the slit spectrograph. In practice, the longest 2.0

s exposures have been used. After initially developing a flight film sample,

it was clear that the spectroheliograph instrumental efficiency was down by as

muchas a factor of I0. With the help of Brian Dohne, a chemical developer was

devised which optimally brought out the film latent image, effectively boosting

the tail and steepening the gammaof the film characteristic curve. Although
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the developed images had a greater fog level than nominal, the final images

were usable and photometrically reliable.

The slit spectrograph on this flight covered the 1520-1570 A wavelength

range. The slit was widened to a I arc sec width to bring down the exposure

time and allow more exposures, covering a greater surface area. The resulting

spectral resolution was 0.i0 A. This region contains chromospheric lines of Si

I, Si II, C I, Fe I, and other species, and the transition region resonance

lines of C IV at 1548 A and 1550 A; in addition, the continuum in this region

arises from the temperature minimumregion of the solar atmosphere. In this

paper we discuss only the C IV slit spectrograph observations. An exposure

time of 2.4 s was used for the raster exposures, which optimally exposed the

C IV lines.

The slit spectrograph was rastered across the solar field by mechanically

stepping the slit position. Wewanted to raster as wide an area as possible,

but with steps small enough not to miss C IV turbulent events in the field.

From the size distribution for these events given in Cook et al. (1987), a step

size of 2 arc sec was generally used, although one raster with I arc sec step

size was performed. As noted above, a spectroheliograph exposure was taken

with every second raster step. On these spectroheliograph images the slit can

be seen displaced in the raster direction in successive images. Although it is

possible to raster over larger fields, optical aberrations in the slit spectro-

graph increase beyond a distance of approximately 30 arc sec to left or right

of the slit central position, and to cover a wide field four individual rasters

were made, with the telescope pointing changedbetween rasters so that no indi-

vidual raster exceeded 25 arc sec relative to the central slit position. The

nominal raster layout was to have 4 individual rasters of the 920 arc sec long

-I0-



slit in the following pattern: raster 1 (2 arc sec steps, 26 position); 5 arc

sec inter-raster spacing; raster 2 (I arc sec steps, 21 positions); 5 arc sec

inter-raster spacing; raster 3 (2 arc sec steps, 26 positions); I0 arc sec

inter-raster spacing; raster 4 (2 arc sec steps, 24 positions). The total

width of the pattern is nominally 186 arc sec, or 3 arc min.

III. THECOLLABORATIVEBRIGHTPOINTCAMPAIGN

The collaborative observing plan called for a morning launch of the AS&E

payload, followed in one-half hour by the NRLHRTSpayload, both on Black Brant

IX sounding rockets. In an effort to minimize possible launch constraints

which might make it harder to launch two closely timed rockets, each Black

Brant was equipped with a Saab S-19 boost phase guidance system. The S-19

allows a wider tolerance for high altitude winds, and gives a lower dispersion

in the re-entry trajectory and final landing spot of the rocket and payload.

The morning launch time was chosen to allow ground-based observations at Kitt

Peak and Big Bear Solar Observatory (BBSO)to begin an hour or more before

launch, while still keeping the actual flight within a time period which would

typically insure good seeing at the ground-based observing sites. Observing

programs at the ground-based sites were developed which emphasizedHe I 10830A

images and magnetogramsfrom Kitt Peak, and videomagnetogramsand H-alpha from

Big Bear. At Kitt Peak, full disk images were taken outside the actual flight

period, while during the flight period a 512 x 256 arc sec field at the planned

position of the HRTSfield was viewed in He I 10830A. At Big Bear, a program

was devised where videomagnetogramsand film H-alpha images were taken during

the observing day in overlapped boxes which also covered the planned HRTS

field, while other areas of the Sun where magnetogramsshowedbipolar regions
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were also occasionally observed to further support the full disk field of the

AS&EX-ray payload.

This planned program was actually attempted several times during the summer

of 1987, but was unsuccessful because of difficulties in launching the first

rocket because of malfunctions with the S-19 rocket guidance system. On 1987

August 15 the AS&E rocket was successfully launched, but one-half hour later

the NRL rocket could not be launched because of a similar S-19 malfunction.

The X-ray and ground-based data obtained on 1987August 15 are not discussed in

this paper.

Finally on 1987 December15 both rockets were successfully launched. This

time, however, another malfunction occurred which affected the pointing of the

HRTSpayload. Pointing information on pitch, roll, and yaw for the Lockheed

SPARCSpayload pointing system was uplinked by radio to the rocket after

launch, and a data dropout occurred during the sending of the roll angle.

Instead of the desired pointing at the southwest quadrant, covering an area

including an active region at the limb, the roll received put the pointing

almost 180" away, in the northeast quadrant, with HRTSobserving one of the

quietest areas on the disk.

[The actually desired southwest limb pointing was jointly observed by

participants in the Coronal Magnetic Structures Observing Campaign (COMSTOC),

and a broad additional range of data is available for his pointing. The full

disk X-ray images, and the small field CCDX-ray images of this area, will be

useful in a separate COMSTOCanalysis.]
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IV. COALIGNMENTOFTHEOBSERVATIONALMATERIAL

Wehave coaligned the three full disk images which were obtained: the full

disk Kitt Peak magnetogramand He I 10830 A, and the X-ray image. We have

processed digitized full disk data which were obtained hours before and after

the rocket flights by compute to produce a rotated image for the time of

flight. This is a computer constructed image in which each pixel in the con-

structed image is obtained by rotating that pixel position to the ti_,e of the

actual full disk observation, using the full geometry of the tilted solar axis

and a formula for solar differential rotation. This rotated pixel position

falls on the actual image, and its numerical value is taken as a linearly

weighted average of the (typically four) original observed pixels which con-

tribute to it. Solar rotation near the disk center is 9 arc sec an hour, and

in comparing observations hours apart, as we have, where we are trying to de-

termine correspondences in features which may be only arc seconds in dimension

(the C IV high velocity events, for example), solar rotation is a significant

effect. This is purely a geometrical correction, and does not account for

actual temporal evolution of features between the time of the actual observa-

tion and the time of the calculated rotated image. In addition, no attempt is

made to further adjust the numerical value of this constructed pixel for the

changed line of sight, so for example a constructed pixel in a magnetogramcan

have a magnetic field value from an area of the actual observed magnetogram

eastward or westward of this position, with a different line of sight angle, or

a He I 10830 A constructed image can have constructed pixel values which are

not corrected for changed limb brightening coefficient at the new constructed

pixel position.
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The Kitt Peak magnetogramand He I 10830A images are obtained at different

wavelengths by the same instrument, and are at the samescale, nominally i arc

sec per pixel; in addition, no rotation should be necessary in coaligning dif-

ferent images. After placing all Kitt Peak full disk images at the samecenter

image coordinates, we comparedmagnetogramsand He I images. In the Kitt Peak

gray scale image display representation most often seen, the He I image is sur-

rounded by a white ring at the limb, which is actually limb brightening in this

chromospheric line at a numerical intensity which is represented by white in

the gray scale used. As a check, we verified that the magnetogramlimb falls

at the inside of this white band on the He I image, as should the limb from a

photospheric line.

The general problem of coaligning images from different instruments can be

difficult. Besides the obvious necessity to place the two images on a similar

linear scale and rotational orientation, there are often instrumental aberra-

tions present so that to someextent the image is not flat field, perhaps in a

nonlinear barrel sense. Wehave developed a general computer program to align

two images where a number of corresponding points on each are believed to

exist. This program constructs a rescaled, rotated image from one of the orig-

inal images which in a least squares sense produces the best coalignment of the

selected pairs of fiducial points on each original image. The rescaling can be

either linear or nonlinear in x and y.

We coaligned the full disk X-ray image using this program, where as fidu-

cial points we took XBPsand their plausible He I dark point counterparts, or

other pairs of fiducial features are small spatial scale which appeared to be

plausible counterparts. Although subjective to some extent, this was very

straightforward to accomplish. We then checked the resulting aligned X-ray
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image's limb with the limbs of the Kitt Peak He I and magnetogramimages. The

X-ray limb, black where silhouetted against the brighter general off disk

coronal emission, fell at the magnetogram limb and the inside of the limb

brightening ring at the He I limb. As a further check, we compared the full

disk white light image also obtained by the AS&Eexperiment with the X-ray

image and found that the white light and dark X-ray limb were coincident.

V. RESULTSFROMTHECOALIGNEDDATA

The XBPsobserved are associated with magnetic dipoles in the magnetograms,

and with dark points in the He I 10830A data. However, every magnetic dipole,

and every dark point, are not always associated with a corresponding XBP. Webb

and Moses (1989) studied the X-ray and Big Bear videomagnetogramdata from the

DecemberII and August 15 launch efforts in an attempt to classify the nature

of the magnetic bipolar regions associated with XBPs. In quiet network regions

magnetic flux appears to emerge in small bipolar ephemeral regions, spread

apart with time, and disappear either by gradual fading of the two opposite

polarity elements of the ephemeral region or by cancellation of one element

with another existing opposite polarity element with its own previous evolution

as an internetwork element, active region remnant, or ephemeral region (see

Martin and Harvey 1979). A time series of magnetograph observations over

several hours is necessary to classify a magnetic bipolar region observed in a

snapshot observation as either an emerging flux ephemeral region, a disappear-

ing flux cancellation, or a stationary flux element lasting an appreciable

time, perhaps simply fading with time. Becauseof excellent temporal coverage,

Webband Moses (1989) were able to characterize the magnetic dipoles co_re-

sponding to XBPsas emerging, stationary, or disappearing flux, and found that
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the most significant class of magnetic dipole signature was disappearing flux

regions.

We do not have comparable temporal coverage in the HRTSfield of observa-

tion. The roll error in the HRTSV pointing described in Section III oriented

the HRTSfield of view completely outside of the target I0 arc minx 25 arc min

region of observation for the Big Bear videomagnetogram. The temporal resolu-

tion of the Kitt Peak full disk magnetogramsis sufficient to show the magnetic

development of someXBPsas shownin Fig. 2.

We have studied the identification in the combined data of sites corre-

sponding to locations in HRTSspectra of the C IV 1550 A wavelength region

showing the high-velocity energetic events described before. The method is to

coalign HRTSV spectroheliograms, which image a wavelength interval around 1600

A where flux is emitted predominantly from the temperature minimumcontinuum,

with ground-based magnetograms. The Tmin images are known (see Cook, Brueck-

ner, and Bartoe 1983) to be highly correlated in their fine structure with

magnetograms,and in fact we can coalign the HRTSspectroheliograms to the Kitt

Peakmagnetogramto a_ound 5 arc sec accuracy. The HRTSspectrograph slit can

be seen on the HRTSspectroheliograph images, and thus the location of transi-

tion region C IV energetic events from the spectra can be accurately transfer-

red to the spectroheliograms, and thus to the magnetogramsand the ground-based

data.

Wehave measuredthe location of the energetic events observed in C IV from

HRTSslit spectrograph data. These events appear to be located at the edges of

strong field network elements, or even within network elements of weakest mag-

netic field; they appear to generally avoid areas away from networks such as

cell centers completely. The C IV events are not X-ray bright points, which
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instead occur at sites of magnetic dipoles whose corresponding features in the

HRTS C IV data are larger and more intense areas instead of the small high-

velocity energetic events.

In Figure 2 the HRTS data has been aligned and compared with the X-ray,

magnetograph, and He I 10830 A data. An original goal of the bright point

campaign was to determine the correspondence of the transition region high

velocity events seen in C IV with the observations from lower atmospheric

regions and with coronal XBPs. The transition region high velocity events

appear to be concentrated at the edges of strong network, or in weaker network

regions, in the quiet Sun. They are not the transition region counterparts of

XBPs. The X-ray image shows a pattern of dark lanes in quiet Sun areas, and

the C IV events appear to be predominantly concentrated within these dark

lanes, avoiding areas of hazy brighter X-ray emission probably corresponding to

unresolved loop systems in active region areas of the disk.

We have been unable to determine if the individual C IV events are associ-

ated with magnetic dipoles, as are the XBPs, although it is clear that such an

association, if it exists, must be with much weaker dipoles than those associ-

ated with XBPs. In examining magnetograms which are displayed to bring up the

weaker field regions (20-50 G), mixed polarity small scale features appear

everywhere in the quiet Sun. The Kitt Peak magnetograph data is from hours

before the rocket flight. We would need to obtain truly simultaneous data and,

more importantly, to develop an objective criterion to claim an association

with a unique dipole out of those present ubiquitously.

We also find a greater number of C IV events than we would have expected

from the results of a disk survey undertaken on the Spacelab 2 flight of the

HRTS payload (Cook et al. 1987). Because of the spatial distribution of the C
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IV events, we are lead to interpret the X-ray dark lanes as regions of enhanced

C IV population. However, this interpretation must be weighed against the

possibility that the detection threshold was extended during the HRTS V flight

because the spatial resolution of the data is better than that from the Space-

lab 2 flight. A resolution of this question must await an increase in the set

of coordinated X-ray images and EUV spectra through additional rocket flights

or an orbital mission.

We have also determined the transition region spectral features which do

correspond with the coronal XBPs. These were found to be larger, brighter

structures in C IV than the high velocity events, with a complex velocity

structure which, however, did not reach the I00 km s -I velocities seen in the C

IV events. Figure 4 shows the HRTS C IV feature corresponding to the prominent

XBP at the right side of the raster pattern, toward Sun center. Two consecu-

tive raster steps are illustrated. The XBP covers a raster width approximately

equal to its length along the slit, and is seen in both raster steps. A promi-

nent C IV energetic event is also seen in one raster step, but is not present

on the step just 2 arc sec away. As with the He 1 10830 A dark points (see Fig.

3), we also see C IV spectral features, no different than those corresponding

to XBPs, which do not have an XBP corresponding X-ray feature. In the cases

both of He 1 10830 A dark points and the HRTS transition region C IV observa-

tions, only a fraction of all similar events are heated to temperatures where

an X-ray signature is also produced.

VI. FUTURE OBSERVING PROGRAMS

The bright point campaign provides an example for the type of collaborative

•programs which might be attempted during the solar maximum period 1989-1991.
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Although there were certainly logistical problems in coordinating multiple

sounding rocket launches and simultaneous ground-based observations, the sci-

entific return is more than correspondingly greater. Further, simultaneous

observations from all levels of the solar atmosphere continues to be shown as

an essential approach to obtain new insight into solar phenomena and must form

the backbone of any future orbital solar observatory.
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Figure I.

Figure 2.

Figure 3.

Figure 4.

FIGURECAPTIONS

Full disk soft X-ray photographic images used in the Collaborative

Bright Point Observing Campaign. Top: 15 August 1987 image, 30

second exposure with organic filter. Bottom: II December 1987

image, 60 second exposure with organic filter.

The section of the solar disk containing the HRTSfield. North at

top, east at left. The map of sites of C IV energetic events is

superposed on a HRTS1600 A spectroheliogram, and the AS&EX-ray,

Kitt Peak magnetograph, and Kitt PeakHe 1 10830A images.

Top: XBP and He I corresponding dark point compared to Kitt Peak

magnetogramof the corresponding dipole from the day before, hours

before flight, hours after flight, and the following day. Bottom:

Comparisonof X-ray image and He 1 10830 A image, showing one He I

dark point with an XBP corresponding to it, while a second similar

He I dark point has no such XBPcounterpart.

HRTSslit spectra of C IV 1548 A and 1550 A from two consecutive

steps (24 and 25) of the third HRTSraster. The steps are 2 arc sec

apart. The C IV counterpart to an XBPis shown, together with a C

IV energetic event visible only in Step 25.
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